5 Commits

Author SHA1 Message Date
37522f974f upd 2024-12-25 16:56:18 +03:00
6375c4eed5 for debug test 2024-09-04 10:12:39 +03:00
c4000d6b75 test 2024-08-14 17:43:12 +03:00
fc02c79135 upd 2024-04-22 14:56:12 +03:00
d068a576f7 Merge pull request #3 from Show-maket/dev
v2.0
2024-03-18 16:24:38 +03:00
15 changed files with 1063 additions and 1413 deletions

4
.gitignore vendored
View File

@ -1,5 +1,3 @@
.vscode/* .vscode/*
bin/* bin/*
!.vscode/launch.json log/*
log/*
/.vscode

View File

@ -1,5 +0,0 @@
{
"board": "STMicroelectronics:stm32:GenF4",
"port": "COM17",
"prebuild": "if exist bin rd /s /q bin"
}

20
.vscode/launch.json vendored
View File

@ -1,20 +0,0 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"cwd": "${workspaceFolder}",
"executable": "${workspaceFolder}/bin/${workspaceFolderBasename}.ino.elf",
"name": "Debug with ST-Link",
"request": "launch",
"type": "cortex-debug",
"runToEntryPoint": "main",
"showDevDebugOutput": "raw",
"servertype": "stlink",
"armToolchainPath": "C://Program Files (x86)//Arm GNU Toolchain arm-none-eabi//13.2 Rel1//bin"
}
]
}

View File

@ -2,26 +2,16 @@
#include "IR_Encoder.h" #include "IR_Encoder.h"
#include "TimerStatic.h" #include "TimerStatic.h"
#include "MemoryCheck.h" #include "MemoryCheck.h"
#include "CarCmdList.h"
/////////////// Pinout /////////////// /////////////// Pinout ///////////////
#define dec0_PIN PIN_KT1_IN #define encForward_PIN 0
#define dec1_PIN PIN_KT2_IN #define encBackward_PIN 5
#define dec2_PIN PIN_KT3_IN
#define dec3_PIN PIN_KT4_IN
#define dec4_PIN PIN_KT5_IN
#define dec5_PIN PIN_KT6_IN
#define dec6_PIN PIN_KT7_IN
#define dec7_PIN PIN_KT8_IN
// #define dec8_PIN PB8
// #define dec9_PIN PB9
// #define dec10_PIN PB10
// #define dec11_PIN PB11
// #define dec12_PIN PB12
// #define dec13_PIN PB13
// #define dec14_PIN PB14
// #define dec15_PIN PB15
#define LoopOut PC13 #define LoopOut 12
#define ISR_Out 10
#define TestOut 13
//////////////// Ini ///////////////// //////////////// Ini /////////////////
@ -29,335 +19,258 @@
#define SERIAL_SPEED 115200 #define SERIAL_SPEED 115200
//////////////// Var ///////////////// //////////////// Var /////////////////
// IR_Encoder encForward(PA5, 42 /* , &decBackward */);
IR_Encoder enc0(PIN_KT8_OUT, 42 /* , &decBackward */); IR_Decoder decForward(2, 555);
// IR_Encoder enc1(PA1, 127 /* , &decBackward */); IR_Decoder decBackward(3, 777);
// IR_Encoder enc2(PA2, 137 /* , &decBackward */);
// IR_Encoder enc3(PA3, 777 /* , &decBackward */);
// IR_Encoder enc10(PA4, 555 /* , &decBackward */);
// IR_Encoder enc11(PC14, 127 /* , &decBackward */);
// IR_Encoder enc12(PC13, 137 /* , &decBackward */);
// IR_Encoder enc13(PA12, 777 /* , &decBackward */);
IR_Encoder encForward(42/* , &decBackward */);
// IR_Encoder encBackward(321, encBackward_PIN);
// IR_Encoder encTree(325, A2); // IR_Encoder encTree(325, A2);
//////////////////////// Функции прерываний //////////////////////// //////////////////////// Функции прерываний ////////////////////////
void EncoderISR() void decForwardISR() {
{ decForward.isr();
IR_Encoder::isr();
} }
//------------------------------------------------------------------- void decBackwardISR() {
decBackward.isr();
IR_Decoder dec0(dec0_PIN, 0); }
void dec_0_ISR() { dec0.isr(); }
IR_Decoder dec1(dec1_PIN, 1);
void dec_1_ISR() { dec1.isr(); }
IR_Decoder dec2(dec2_PIN, 2);
void dec_2_ISR() { dec2.isr(); }
IR_Decoder dec3(dec3_PIN, 3);
void dec_3_ISR() { dec3.isr(); }
IR_Decoder dec4(dec4_PIN, 4);
void dec_4_ISR() { dec4.isr(); }
IR_Decoder dec5(dec5_PIN, 5);
void dec_5_ISR() { dec5.isr(); }
IR_Decoder dec6(dec6_PIN, 6);
void dec_6_ISR() { dec6.isr(); }
IR_Decoder dec7(dec7_PIN, 7);
void dec_7_ISR() { dec7.isr(); }
// IR_Decoder dec8(dec8_PIN, 8);
// void dec_8_ISR() { dec8.isr(); }
// IR_Decoder dec9(dec9_PIN, 9);
// void dec_9_ISR() { dec9.isr(); }
// IR_Decoder dec10(dec10_PIN, 10);
// void dec_10_ISR() { dec10.isr(); }
// IR_Decoder dec11(dec11_PIN, 11);
// void dec_11_ISR() { dec11.isr(); }
// IR_Decoder dec12(dec12_PIN, 12);
// void dec_12_ISR() { dec12.isr(); }
// IR_Decoder dec13(dec13_PIN, 13);
// void dec_13_ISR() { dec13.isr(); }
static uint8_t* portOut;
ISR(TIMER2_COMPA_vect) {
encForward.isr();
// encBackward.isr();
// encTree.isr();
//TODO: Сделать выбор порта
*portOut = (*portOut & 0b11111110) |
(
encForward.ir_out_virtual << 0U
// | encBackward.ir_out_virtual << 6U
// | encTree.ir_out_virtual << 2U
);
}
///////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////
uint8_t data0[] = {}; uint8_t data0 [] = { };
uint8_t data1[] = {42}; uint8_t data1 [] = { 42 };
uint8_t data2[] = {42, 127}; uint8_t data2 [] = { 42 , 127 };
uint8_t data3[] = {42, 127, 137}; uint8_t data3 [] = { 42 , 127, 137 };
uint8_t data4[] = {42, 127, 137, 255}; uint8_t data4 [] = { 42 , 127, 137, 255 };
uint32_t loopTimer; uint32_t loopTimer;
uint8_t sig = 0; uint8_t sig = 255;
uint16_t targetAddr = IR_Broadcast; uint16_t targetAddr = IR_Broadcast;
Timer t1(750, millis, []() {
Timer t1(500, millis, []() // Serial.println(sig);
{
// Serial.println( digitalPinToBitMask(enc0.getPin()), BIN);
// enc0.sendData(IR_Broadcast, data4, sizeof(data4));
// enc1.sendData(IR_Broadcast, data3, sizeof(data3));
// enc2.sendData(IR_Broadcast, data2, sizeof(data2));
// enc3.sendData(IR_Broadcast, data1, sizeof(data1));
// enc10.sendData(IR_Broadcast, data4, sizeof(data4));
// enc11.sendData(IR_Broadcast, data3, sizeof(data3));
// enc12.sendData(IR_Broadcast, data2, sizeof(data2));
// enc13.sendData(IR_Broadcast, data1, sizeof(data1));
// Serial.println(sig); switch (sig) {
case 0:
encForward.sendData(targetAddr);
break;
case 1:
encForward.sendData(targetAddr, data1, sizeof(data1));
break;
case 2:
encForward.sendData(targetAddr, data2, sizeof(data2));
break;
case 3:
encForward.sendData(targetAddr, data3, sizeof(data3));
break;
case 4:
encForward.sendData(targetAddr, data4, sizeof(data4));
break;
// switch (sig) case 10:
// { encForward.sendData(targetAddr, data0, sizeof(data0), true);
// case 0: break;
// encForward.sendData(targetAddr); case 11:
// break; encForward.sendData(targetAddr, data1, sizeof(data1), true);
// case 1: break;
// encForward.sendData(targetAddr, data1, sizeof(data1)); case 12:
// break; encForward.sendData(targetAddr, data2, sizeof(data2), true);
// case 2: break;
// encForward.sendData(targetAddr, data2, sizeof(data2)); case 13:
// break; encForward.sendData(targetAddr, data3, sizeof(data3), true);
// case 3: break;
// encForward.sendData(targetAddr, data3, sizeof(data3)); case 14:
// break; encForward.sendData(targetAddr, data4, sizeof(data4), true);
// case 4: break;
// encForward.sendData(targetAddr, data4, sizeof(data4));
// break;
// case 10:
// encForward.sendData(targetAddr, data0, sizeof(data0), true);
// break;
// case 11:
// encForward.sendData(targetAddr, data1, sizeof(data1), true);
// break;
// case 12:
// encForward.sendData(targetAddr, data2, sizeof(data2), true);
// break;
// case 13:
// encForward.sendData(targetAddr, data3, sizeof(data3), true);
// break;
// case 14:
// encForward.sendData(targetAddr, data4, sizeof(data4), true);
// break;
// case 20:
// encForward.sendBack();
// break;
// case 21:
// encForward.sendBack(data1, sizeof(data1));
// break;
// case 22:
// encForward.sendBack(data2, sizeof(data2));
// break;
// case 23:
// encForward.sendBack(data3, sizeof(data3));
// break;
// case 24:
// encForward.sendBack(data4, sizeof(data4));
// break;
// case 30: case 20:
// encForward.sendBackTo(targetAddr); encForward.sendBack();
// break; break;
// case 31: case 21:
// encForward.sendBackTo(targetAddr, data1, sizeof(data1)); encForward.sendBack(data1, sizeof(data1));
// break; break;
// case 32: case 22:
// encForward.sendBackTo(targetAddr, data2, sizeof(data2)); encForward.sendBack(data2, sizeof(data2));
// break; break;
// case 33: case 23:
// encForward.sendBackTo(targetAddr, data3, sizeof(data3)); encForward.sendBack(data3, sizeof(data3));
// break; break;
// case 34: case 24:
// encForward.sendBackTo(targetAddr, data4, sizeof(data4)); encForward.sendBack(data4, sizeof(data4));
// break; break;
// case 41: case 30:
// encForward.sendRequest(targetAddr); encForward.sendBackTo(targetAddr);
// break; break;
// case 42: case 31:
// encForward.sendAccept(targetAddr); encForward.sendBackTo(targetAddr, data1, sizeof(data1));
// break; break;
case 32:
encForward.sendBackTo(targetAddr, data2, sizeof(data2));
break;
case 33:
encForward.sendBackTo(targetAddr, data3, sizeof(data3));
break;
case 34:
encForward.sendBackTo(targetAddr, data4, sizeof(data4));
break;
// default: case 41:
// break; encForward.sendRequest(targetAddr);
// } break;
// encBackward.sendData(IR_Broadcast, data2); case 42:
// encTree.sendData(IR_Broadcast, rawData3); encForward.sendAccept(targetAddr);
}); break;
// Timer t2(50, millis, []()
// { digitalToggle(LED_BUILTIN); });
Timer signalDetectTimer; default:
break;
}
// encBackward.sendData(IR_Broadcast, data2);
// encTree.sendData(IR_Broadcast, rawData3);
});
Timer t2(500, millis, []() {
digitalToggle(13);
});
///////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////
HardwareTimer IR_Timer(TIM3); void setup() {
IR_Encoder::timerSetup();
void setup() portOut = &PORTB;
{
IR_Timer.setOverflow(carrierFrec * 2, HERTZ_FORMAT);
IR_Timer.attachInterrupt(1, EncoderISR);
NVIC_SetPriority(IRQn_Type::TIM3_IRQn, 0);
IR_Timer.resume();
Serial.begin(SERIAL_SPEED); Serial.begin(SERIAL_SPEED);
Serial.println(F(INFO)); Serial.println(F(INFO));
pinMode(A0, INPUT_PULLUP);
pinMode(A1, INPUT_PULLUP);
pinMode(A2, INPUT_PULLUP);
pinMode(A3, INPUT_PULLUP);
pinMode(LoopOut, OUTPUT); pinMode(LoopOut, OUTPUT);
pinMode(ISR_Out, OUTPUT);
pinMode(dec0_PIN, INPUT_PULLUP); pinMode(2, INPUT_PULLUP);
pinMode(dec1_PIN, INPUT_PULLUP); pinMode(3, INPUT_PULLUP);
pinMode(dec2_PIN, INPUT_PULLUP);
pinMode(dec3_PIN, INPUT_PULLUP);
pinMode(dec4_PIN, INPUT_PULLUP);
pinMode(dec5_PIN, INPUT_PULLUP);
pinMode(dec6_PIN, INPUT_PULLUP);
pinMode(dec7_PIN, INPUT_PULLUP);
// pinMode(dec8_PIN, INPUT_PULLUP);
// pinMode(dec9_PIN, INPUT_PULLUP);
// pinMode(dec10_PIN, INPUT_PULLUP);
// pinMode(dec11_PIN, INPUT_PULLUP);
// pinMode(dec12_PIN, INPUT_PULLUP);
// pinMode(dec13_PIN, INPUT_PULLUP);
attachInterrupt(dec0_PIN, dec_0_ISR, CHANGE); pinMode(8, OUTPUT);
attachInterrupt(dec1_PIN, dec_1_ISR, CHANGE); pinMode(9, OUTPUT);
attachInterrupt(dec2_PIN, dec_2_ISR, CHANGE); pinMode(11, OUTPUT);
attachInterrupt(dec3_PIN, dec_3_ISR, CHANGE); pinMode(13, OUTPUT);
attachInterrupt(dec4_PIN, dec_4_ISR, CHANGE); pinMode(encForward_PIN, OUTPUT);
attachInterrupt(dec5_PIN, dec_5_ISR, CHANGE); pinMode(encBackward_PIN, OUTPUT);
attachInterrupt(dec6_PIN, dec_6_ISR, CHANGE); pinMode(13, OUTPUT);
attachInterrupt(dec7_PIN, dec_7_ISR, CHANGE); pinMode(12, OUTPUT);
// attachInterrupt(dec8_PIN, dec_8_ISR, CHANGE);
// attachInterrupt(dec9_PIN, dec_9_ISR, CHANGE);
// attachInterrupt(dec10_PIN, dec_10_ISR, CHANGE);
// attachInterrupt(dec11_PIN, dec_11_ISR, CHANGE); // IR_DecoderRaw* blindFromForward [] { &decForward, &decBackward };
// attachInterrupt(dec12_PIN, dec_12_ISR, CHANGE); // encForward.setBlindDecoders(blindFromForward, sizeof(blindFromForward) / sizeof(IR_DecoderRaw*));
// attachInterrupt(dec13_PIN, dec_13_ISR, CHANGE);
attachInterrupt(0, decForwardISR, CHANGE); // D2
attachInterrupt(1, decBackwardISR, CHANGE); // D3
} }
void loop()
{ bool testLed = false;
digitalToggle(LoopOut); uint32_t testLed_timer;
void loop() {
// digitalToggle(LoopOut);
Timer::tick(); Timer::tick();
IR_Decoder::tick();
bool rx_flag = false; decForward.tick();
rx_flag |= status(dec0); decBackward.tick();
rx_flag |= status(dec1);
rx_flag |= status(dec2);
rx_flag |= status(dec3);
rx_flag |= status(dec4);
rx_flag |= status(dec5);
rx_flag |= status(dec6);
rx_flag |= status(dec7);
// rx_flag |= status(dec8);
// rx_flag |= status(dec9);
// rx_flag |= status(dec10);
// rx_flag |= status(dec11);
// rx_flag |= status(dec12);
// rx_flag |= status(dec13);
if (Serial.available()) status(decForward);
{ status(decBackward);
// Serial.println(micros() - loopTimer);
// loopTimer = micros();
// delayMicroseconds(120*5);
if (Serial.available()) {
uint8_t in = Serial.parseInt(); uint8_t in = Serial.parseInt();
switch (in) switch (in) {
{ case 100:
case 100: targetAddr = IR_Broadcast;
targetAddr = IR_Broadcast; break;
break; case 101:
case 101: targetAddr = 555;
targetAddr = 555; break;
break; case 102:
case 102: targetAddr = 777;
targetAddr = 777; break;
break;
default: default:
sig = in; sig = in;
break; break;
} }
} }
}
if(testLed && millis() - testLed_timer > 100){
testLed=false;
digitalWrite(12, LOW);
Timer statusSimpleDelay;
bool statusSimple(IR_Decoder &dec)
{
bool ret;
if (ret = dec.gotData.available())
{
Serial.print("DEC: ");
Serial.print(dec.getId());
Serial.print(" err: ");
Serial.print(dec.gotData.getErrorCount());
Serial.print("\n");
statusSimpleDelay.delay(100, millis, []()
{ Serial.print("\n\n\n\n"); });
} }
return ret;
} }
void detectSignal()
{
// digitalWrite(SignalDetectLed, HIGH);
// signalDetectTimer.delay(50, millis, []()
// { digitalWrite(SignalDetectLed, LOW); });
}
// test
bool status(IR_Decoder &dec)
{
if (dec.gotData.available())
{ //test
detectSignal(); void status(IR_Decoder& dec) {
// Serial.println(micros()); if (dec.gotData.available() && dec.gotData.getAddrFrom() != 42) {
digitalWrite(12, HIGH);
testLed = true;
testLed_timer = millis();
encForward.sendData(IR_Broadcast, CarCmd::stop); //<<<<<<<<<<<<<<<<<<<<<<<<<<< CMD IS HERE
String str; String str;
if (/* dec.gotData.getDataPrt()[1] */ 1) if (/* dec.gotData.getDataPrt()[1] */1) {
{ str += ("Data on pin "); str += (dec.isrPin); str += "\n";
str += ("Data on pin ");
str += (dec.getPin());
str += "\n";
uint8_t msg = dec.gotData.getMsgRAW(); uint8_t msg = dec.gotData.getMsgRAW();
str += (" MSG: "); str += (" MSG: ");
for (size_t i = 0; i < 8; i++) for (size_t i = 0; i < 8; i++) {
{ if (i == 3) str += " ";
if (i == 3)
str += " ";
str += (msg >> (7 - i)) & 1U; str += (msg >> (7 - i)) & 1U;
} }
str += "\n"; str += "\n";
str += (" DATA SIZE: "); str += (" DATA SIZE: "); str += (dec.gotData.getDataSize()); str += "\n";
str += (dec.gotData.getDataSize()); str += (" ADDRESS FROM: "); str += (dec.gotData.getAddrFrom()); str += "\n";
str += "\n"; str += (" ADDRESS TO: "); str += (dec.gotData.getAddrTo()); str += "\n";
str += (" ADDRESS FROM: ");
str += (dec.gotData.getAddrFrom());
str += "\n";
str += (" ADDRESS TO: ");
str += (dec.gotData.getAddrTo());
str += "\n";
// str += (" CRC PACK: "); str += (dec.gotData.getCrcIN()); str += "\n"; // str += (" CRC PACK: "); str += (dec.gotData.getCrcIN()); str += "\n";
// str += (" CRC CALC: "); str += (dec.gotData.getCrcCALC()); str += "\n"; // str += (" CRC CALC: "); str += (dec.gotData.getCrcCALC()); str += "\n";
str += "\n"; str += "\n";
for (size_t i = 0; i < min(uint8_t(10), dec.gotData.getDataSize()); i++) for (size_t i = 0; i < min(10, dec.gotData.getDataSize()); i++) {
{ switch (i) {
switch (i)
{
// case 0: // case 0:
// str += (" ADDR: "); // str += (" ADDR: ");
// break; // break;
@ -365,71 +278,49 @@ bool status(IR_Decoder &dec)
// str += (" CMD: "); // str += (" CMD: ");
// break; // break;
default: default:
str += (" Data["); str += (" Data["); str += (i); str += ("]: ");
str += (i); break;
str += ("]: ");
break;
} }
str += (dec.gotData.getDataPrt()[i]); str += (dec.gotData.getDataPrt()[i]); str += "\n";
str += "\n";
} }
str += ("\n*******ErrAll: ");
str += (dec.gotData.getErrorCount()); str += ("\n*******ErrAll: "); str += (dec.gotData.getErrorCount()); str += "\n";
str += "\n"; str += ("**ErrDistance: "); str += ((int)(dec.gotData.getErrorHighSignal() - dec.gotData.getErrorLowSignal())); str += "\n";
str += ("**ErrDistance: ");
str += ((int)(dec.gotData.getErrorHighSignal() - dec.gotData.getErrorLowSignal()));
str += "\n";
str += "\n"; str += "\n";
} } else {
else str += ("SELF"); str += "\n";
{
str += ("SELF");
str += "\n";
str += "\n"; str += "\n";
} }
// obj->resetAvailable(); // obj->resetAvailable();
Serial.write(str.c_str()); Serial.write(str.c_str());
} }
if (dec.gotBackData.available()) if (dec.gotBackData.available()) {
{
detectSignal();
String str; String str;
if (/* dec.gotData.getDataPrt()[1] */ 1) if (/* dec.gotData.getDataPrt()[1] */1) {
{ str += ("BackData on pin "); str += (dec.isrPin); str += "\n";
str += ("BackData on pin ");
str += (dec.getPin());
str += "\n";
uint8_t msg = dec.gotBackData.getMsgRAW(); uint8_t msg = dec.gotBackData.getMsgRAW();
str += (" MSG: "); str += (" MSG: ");
for (size_t i = 0; i < 8; i++) for (size_t i = 0; i < 8; i++) {
{ if (i == 3) str += " ";
if (i == 3)
str += " ";
str += (msg >> (7 - i)) & 1U; str += (msg >> (7 - i)) & 1U;
} }
str += "\n"; str += "\n";
str += (" DATA SIZE: "); str += (" DATA SIZE: "); str += (dec.gotBackData.getDataSize()); str += "\n";
str += (dec.gotBackData.getDataSize()); str += (" ADDRESS FROM: "); str += (dec.gotBackData.getAddrFrom()); str += "\n";
str += "\n";
str += (" ADDRESS FROM: ");
str += (dec.gotBackData.getAddrFrom());
str += "\n";
// str += (" ADDRESS TO: "); str += (dec.gotBackData.getAddrTo()); str += "\n"; // str += (" ADDRESS TO: "); str += (dec.gotBackData.getAddrTo()); str += "\n";
// str += (" CRC PACK: "); str += (dec.gotBackData.getCrcIN()); str += "\n"; // str += (" CRC PACK: "); str += (dec.gotBackData.getCrcIN()); str += "\n";
// str += (" CRC CALC: "); str += (dec.gotBackData.getCrcCALC()); str += "\n"; // str += (" CRC CALC: "); str += (dec.gotBackData.getCrcCALC()); str += "\n";
str += "\n"; str += "\n";
for (size_t i = 0; i < min(uint8_t(10), dec.gotBackData.getDataSize()); i++) for (size_t i = 0; i < min(10, dec.gotBackData.getDataSize()); i++) {
{ switch (i) {
switch (i)
{
// case 0: // case 0:
// str += (" ADDR: "); // str += (" ADDR: ");
// break; // break;
@ -437,136 +328,98 @@ bool status(IR_Decoder &dec)
// str += (" CMD: "); // str += (" CMD: ");
// break; // break;
default: default:
str += (" Data["); str += (" Data["); str += (i); str += ("]: ");
str += (i); break;
str += ("]: ");
break;
} }
str += (dec.gotBackData.getDataPrt()[i]); str += (dec.gotBackData.getDataPrt()[i]); str += "\n";
str += "\n";
} }
str += ("\n*******ErrAll: ");
str += (dec.gotBackData.getErrorCount()); str += ("\n*******ErrAll: "); str += (dec.gotBackData.getErrorCount()); str += "\n";
str += "\n"; str += ("**ErrDistance: "); str += ((int)(dec.gotBackData.getErrorHighSignal() - dec.gotBackData.getErrorLowSignal())); str += "\n";
str += ("**ErrDistance: ");
str += ((int)(dec.gotBackData.getErrorHighSignal() - dec.gotBackData.getErrorLowSignal()));
str += "\n";
str += "\n"; str += "\n";
} } else {
else str += ("SELF"); str += "\n";
{
str += ("SELF");
str += "\n";
str += "\n"; str += "\n";
} }
// obj->resetAvailable(); // obj->resetAvailable();
Serial.write(str.c_str()); Serial.write(str.c_str());
} }
if (dec.gotAccept.available()) if (dec.gotAccept.available()) {
{
detectSignal();
String str; String str;
if (/* dec.gotData.getDataPrt()[1] */ 1) if (/* dec.gotData.getDataPrt()[1] */1) {
{ str += ("Accept on pin "); str += (dec.isrPin); str += "\n";
str += ("Accept on pin ");
str += (dec.getPin());
str += "\n";
uint8_t msg = dec.gotAccept.getMsgRAW(); uint8_t msg = dec.gotAccept.getMsgRAW();
str += (" MSG: "); str += (" MSG: ");
for (size_t i = 0; i < 8; i++) for (size_t i = 0; i < 8; i++) {
{ if (i == 3) str += " ";
if (i == 3)
str += " ";
str += (msg >> (7 - i)) & 1U; str += (msg >> (7 - i)) & 1U;
} }
str += "\n"; str += "\n";
// str += (" DATA SIZE: "); str += (dec.gotAccept.getDataSize()); str += "\n"; // str += (" DATA SIZE: "); str += (dec.gotAccept.getDataSize()); str += "\n";
str += (" ADDRESS FROM: "); str += (" ADDRESS FROM: "); str += (dec.gotAccept.getAddrFrom()); str += "\n";
str += (dec.gotAccept.getAddrFrom());
str += "\n";
// str += (" ADDRESS TO: "); str += (dec.gotAccept.getAddrTo()); str += "\n"; // str += (" ADDRESS TO: "); str += (dec.gotAccept.getAddrTo()); str += "\n";
// str += (" CRC PACK: "); str += (dec.gotAccept.getCrcIN()); str += "\n"; // str += (" CRC PACK: "); str += (dec.gotAccept.getCrcIN()); str += "\n";
// str += (" CRC CALC: "); str += (dec.gotAccept.getCrcCALC()); str += "\n"; // str += (" CRC CALC: "); str += (dec.gotAccept.getCrcCALC()); str += "\n";
str += "\n"; str += "\n";
str += (" Data: "); str += (" Data: "); str += (dec.gotAccept.getCustomByte());
str += (dec.gotAccept.getCustomByte());
str += ("\n\n*******ErrAll: ");
str += (dec.gotAccept.getErrorCount());
str += "\n"; str += ("\n\n*******ErrAll: "); str += (dec.gotAccept.getErrorCount()); str += "\n";
str += ("**ErrDistance: "); str += ("**ErrDistance: "); str += ((int)(dec.gotAccept.getErrorHighSignal() - dec.gotAccept.getErrorLowSignal())); str += "\n";
str += ((int)(dec.gotAccept.getErrorHighSignal() - dec.gotAccept.getErrorLowSignal()));
str += "\n";
str += "\n"; str += "\n";
} } else {
else str += ("SELF"); str += "\n";
{
str += ("SELF");
str += "\n";
str += "\n"; str += "\n";
} }
// obj->resetAvailable(); // obj->resetAvailable();
Serial.write(str.c_str()); Serial.write(str.c_str());
} }
if (dec.gotRequest.available()) if (dec.gotRequest.available()) {
{
detectSignal();
String str; String str;
if (/* dec.gotData.getDataPrt()[1] */ 1) if (/* dec.gotData.getDataPrt()[1] */1) {
{ str += ("Request on pin "); str += (dec.isrPin); str += "\n";
str += ("Request on pin ");
str += (dec.getPin());
str += "\n";
uint8_t msg = dec.gotRequest.getMsgRAW(); uint8_t msg = dec.gotRequest.getMsgRAW();
str += (" MSG: "); str += (" MSG: ");
for (size_t i = 0; i < 8; i++) for (size_t i = 0; i < 8; i++) {
{ if (i == 3) str += " ";
if (i == 3)
str += " ";
str += (msg >> (7 - i)) & 1U; str += (msg >> (7 - i)) & 1U;
} }
str += "\n"; str += "\n";
// str += (" DATA SIZE: "); str += (dec.gotRequest.getDataSize()); str += "\n"; // str += (" DATA SIZE: "); str += (dec.gotRequest.getDataSize()); str += "\n";
str += (" ADDRESS FROM: "); str += (" ADDRESS FROM: "); str += (dec.gotRequest.getAddrFrom()); str += "\n";
str += (dec.gotRequest.getAddrFrom()); str += (" ADDRESS TO: "); str += (dec.gotRequest.getAddrTo()); str += "\n";
str += "\n";
str += (" ADDRESS TO: ");
str += (dec.gotRequest.getAddrTo());
str += "\n";
// str += (" CRC PACK: "); str += (dec.gotRequest.getCrcIN()); str += "\n"; // str += (" CRC PACK: "); str += (dec.gotRequest.getCrcIN()); str += "\n";
// str += (" CRC CALC: "); str += (dec.gotRequest.getCrcCALC()); str += "\n"; // str += (" CRC CALC: "); str += (dec.gotRequest.getCrcCALC()); str += "\n";
str += "\n"; str += "\n";
str += ("\n*******ErrAll: ");
str += (dec.gotRequest.getErrorCount()); str += ("\n*******ErrAll: "); str += (dec.gotRequest.getErrorCount()); str += "\n";
str += "\n"; str += ("**ErrDistance: "); str += ((int)(dec.gotRequest.getErrorHighSignal() - dec.gotRequest.getErrorLowSignal())); str += "\n";
str += ("**ErrDistance: ");
str += ((int)(dec.gotRequest.getErrorHighSignal() - dec.gotRequest.getErrorLowSignal()));
str += "\n";
str += "\n"; str += "\n";
} } else {
else str += ("SELF"); str += "\n";
{
str += ("SELF");
str += "\n";
str += "\n"; str += "\n";
} }
// obj->resetAvailable(); // obj->resetAvailable();
Serial.write(str.c_str()); Serial.write(str.c_str());
} }
return false;
} }

View File

@ -1,105 +0,0 @@
#include "IR_Decoder.h"
std::list<IR_Decoder *> &IR_Decoder::get_dec_list() // определение функции
{
static std::list<IR_Decoder *> dec_list; // статическая локальная переменная
return dec_list; // возвращается ссылка на переменную
}
// IR_Decoder::IR_Decoder() {};
IR_Decoder::IR_Decoder(const uint8_t pin, uint16_t addr, IR_Encoder *encPair, bool autoHandle)
: IR_DecoderRaw(pin, addr, encPair)
{
get_dec_list().push_back(this);
if(autoHandle){
enable();
}
};
void IR_Decoder::enable()
{
auto &dec_list = get_dec_list();
if (std::find(dec_list.begin(), dec_list.end(), this) == dec_list.end())
{
dec_list.push_back(this);
}
pinMode(pin, INPUT_PULLUP);
attachInterrupt(pin, (*this)(), CHANGE);
}
void IR_Decoder::disable()
{
detachInterrupt(pin);
pinMode(pin, INPUT);
auto &dec_list = get_dec_list();
auto it = std::find(dec_list.begin(), dec_list.end(), this);
if (it != dec_list.end())
{
dec_list.erase(it);
}
}
std::function<void()> IR_Decoder::operator()()
{
return std::bind(&IR_Decoder::isr, this);
}
IR_Decoder::~IR_Decoder()
{
IR_Decoder::get_dec_list().remove(this);
}
void IR_Decoder::tick()
{
for (const auto &element : IR_Decoder::get_dec_list())
{
element->_tick();
}
}
void IR_Decoder::_tick()
{
IR_DecoderRaw::tick();
if (availableRaw())
{
#ifdef IRDEBUG_INFO
Serial.println("PARSING RAW DATA");
#endif
isWaitingAcceptSend = false;
switch (packInfo.buffer[0] >> 5 & IR_MASK_MSG_TYPE)
{
case IR_MSG_DATA_ACCEPT:
case IR_MSG_DATA_NOACCEPT:
gotData.set(&packInfo, id);
break;
case IR_MSG_BACK:
case IR_MSG_BACK_TO:
gotBackData.set(&packInfo, id);
break;
case IR_MSG_REQUEST:
gotRequest.set(&packInfo, id);
break;
case IR_MSG_ACCEPT:
gotAccept.set(&packInfo, id);
break;
default:
break;
}
if (gotData.isAvailable && (gotData.getMsgType() == IR_MSG_DATA_ACCEPT))
{
acceptSendTimer = millis();
addrAcceptSendTo = gotData.getAddrFrom();
acceptCustomByte = crc8(gotData.getDataPrt(), 0, gotData.getDataSize(), poly1);
if (addrAcceptSendTo && addrAcceptSendTo < IR_Broadcast)
isWaitingAcceptSend = true;
}
gotRaw.set(&packInfo, id);
}
if (isWaitingAcceptSend && millis() - acceptSendTimer > acceptDelay)
{
encoder->sendAccept(addrAcceptSendTo, acceptCustomByte);
isWaitingAcceptSend = false;
}
}

View File

@ -5,16 +5,11 @@
class IR_Decoder : public IR_DecoderRaw class IR_Decoder : public IR_DecoderRaw
{ {
private:
// static std::list<IR_Decoder *> dec_list;
static std::list<IR_Decoder*>& get_dec_list();
void _tick();
uint32_t acceptSendTimer; uint32_t acceptSendTimer;
bool isWaitingAcceptSend; bool isWaitingAcceptSend;
uint16_t addrAcceptSendTo; uint16_t addrAcceptSendTo;
uint16_t acceptDelay = IR_ResponseDelay; uint16_t acceptDelay = 75;
uint8_t acceptCustomByte; uint8_t acceptCustomByte;
public: public:
@ -24,23 +19,59 @@ public:
PacketTypes::Request gotRequest; PacketTypes::Request gotRequest;
PacketTypes::BasePack gotRaw; PacketTypes::BasePack gotRaw;
// IR_Decoder(); IR_Decoder(const uint8_t isrPin, uint16_t addr, IR_Encoder *encPair = nullptr) : IR_DecoderRaw(isrPin, addr, encPair) {}
IR_Decoder(const uint8_t pin, uint16_t addr = 0, IR_Encoder *encPair = nullptr, bool autoHandle = true);
std::function<void()> operator()(); void tick()
{
IR_DecoderRaw::tick();
if (availableRaw())
{
#ifdef IRDEBUG_INFO
Serial.println("PARSING RAW DATA");
#endif
isWaitingAcceptSend = false;
switch (packInfo.buffer[0] >> 5 & IR_MASK_MSG_TYPE)
{
case IR_MSG_DATA_ACCEPT:
case IR_MSG_DATA_NOACCEPT:
gotData.set(&packInfo, id);
break;
case IR_MSG_BACK:
case IR_MSG_BACK_TO:
gotBackData.set(&packInfo, id);
break;
case IR_MSG_REQUEST:
gotRequest.set(&packInfo, id);
break;
case IR_MSG_ACCEPT:
gotAccept.set(&packInfo, id);
break;
void enable(); default:
void disable(); break;
}
if (gotData.isAvailable && (gotData.getMsgType() == IR_MSG_DATA_ACCEPT))
{
acceptSendTimer = millis();
addrAcceptSendTo = gotData.getAddrFrom();
acceptCustomByte = crc8(gotData.getDataPrt(), 0, gotData.getDataSize(), poly1);
if (addrAcceptSendTo && addrAcceptSendTo < IR_Broadcast)
isWaitingAcceptSend = true;
}
gotRaw.set(&packInfo, id);
}
if (isWaitingAcceptSend && millis() - acceptSendTimer > 75)
{
encoder->sendAccept(addrAcceptSendTo, acceptCustomByte);
isWaitingAcceptSend = false;
}
}
~IR_Decoder(); void setAcceptDelay(uint16_t acceptDelay)
static void tick();
inline void setAcceptDelay(uint16_t acceptDelay)
{ {
this->acceptDelay = acceptDelay; this->acceptDelay = acceptDelay;
} }
inline uint16_t getAcceptDelay() uint16_t getAcceptDelay()
{ {
return this->acceptDelay; return this->acceptDelay;
} }

View File

@ -1,84 +1,58 @@
#include "IR_DecoderRaw.h" #include "IR_DecoderRaw.h"
#include "IR_Encoder.h" #include "IR_Encoder.h"
IR_DecoderRaw::IR_DecoderRaw(const uint8_t pin, uint16_t addr, IR_Encoder *encPair) : encoder(encPair) IR_DecoderRaw::IR_DecoderRaw(const uint8_t isrPin, uint16_t addr, IR_Encoder *encPair = nullptr) : isrPin(isrPin), encoder(encPair)
{ {
setPin(pin);
id = addr; id = addr;
prevRise = prevFall = prevPrevFall = prevPrevRise = 0; prevRise = prevFall = prevPrevFall = prevPrevRise = 0;
if (encPair != nullptr) if (encPair != nullptr)
{ {
encPair->decPair = this; encPair->decPair = this;
} }
#ifdef IRDEBUG
pinMode(wrHigh, OUTPUT);
pinMode(wrLow, OUTPUT);
pinMode(writeOp, OUTPUT);
pinMode(errOut, OUTPUT);
pinMode(up, OUTPUT);
pinMode(down, OUTPUT);
#endif
} }
bool IR_DecoderRaw::isSubOverflow()
{
noInterrupts();
volatile bool ret = isSubBufferOverflow;
interrupts();
return ret;
}
bool IR_DecoderRaw::availableRaw()
{
if (isAvailable)
{
isAvailable = false;
return true;
}
else
{
return false;
}
};
//////////////////////////////////// isr /////////////////////////////////////////// //////////////////////////////////// isr ///////////////////////////////////////////
volatile uint32_t time_;
void IR_DecoderRaw::isr() void IR_DecoderRaw::isr()
{ {
// Serial.print("ISR\n"); if (isPairSending)
if(isPairSending){
return; return;
}
noInterrupts(); subBuffer[currentSubBufferIndex].next = nullptr;
// time_ = HAL_GetTick() * 1000 + ((SysTick->LOAD + 1 - SysTick->VAL) * 1000) / SysTick->LOAD + 1; subBuffer[currentSubBufferIndex].dir = (PIND >> isrPin) & 1;
time_ = micros(); subBuffer[currentSubBufferIndex].time = micros();
interrupts();
if (time_ < oldTime) if (firstUnHandledFront == nullptr)
{ {
firstUnHandledFront = &subBuffer[currentSubBufferIndex]; // Если нет необработанных данных - добавляем их
#ifdef IRDEBUG isSubBufferOverflow = false;
Serial.print("\n");
Serial.print("count: ");
Serial.println(wrongCounter++);
Serial.print("time: ");
Serial.println(time_);
Serial.print("oldTime: ");
Serial.println(oldTime);
Serial.print("sub: ");
Serial.println(max((uint32_t)time_, oldTime) - min((uint32_t)time_, oldTime));
#endif
time_ += 1000;
} }
oldTime = time_; else
{
if (firstUnHandledFront == &subBuffer[currentSubBufferIndex])
{ // Если контроллер не успел обработать новый сигнал, принудительно пропускаем его
firstUnHandledFront = firstUnHandledFront->next;
isSubBufferOverflow = true;
FrontStorage edge; #ifdef IRDEBUG_INFO
edge.dir = port->IDR & mask; // Serial.println();
edge.time = time_; Serial.println(" ISR BUFFER OVERFLOW ");
// Serial.println();
#endif
}
}
subBuffer.push(edge); if (lastFront == nullptr)
{
lastFront = &subBuffer[currentSubBufferIndex];
}
else
{
lastFront->next = &subBuffer[currentSubBufferIndex];
lastFront = &subBuffer[currentSubBufferIndex];
}
currentSubBufferIndex == (subBufferSize - 1) ? currentSubBufferIndex = 0 : currentSubBufferIndex++; // Закольцовка буффера
} }
//////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////
@ -104,9 +78,7 @@ void IR_DecoderRaw::firstRX()
isPreamb = true; isPreamb = true;
riseSyncTime = bitTime /* 1100 */; riseSyncTime = bitTime /* 1100 */;
#ifdef IRDEBUG
wrCounter = 0;
#endif
memset(dataBuffer, 0x00, dataByteSizeMax); memset(dataBuffer, 0x00, dataByteSizeMax);
} }
@ -123,113 +95,53 @@ void IR_DecoderRaw::listenStart()
void IR_DecoderRaw::tick() void IR_DecoderRaw::tick()
{ {
FrontStorage currentFront; FrontStorage currentFront;
noInterrupts(); uint8_t oldSREG = SREG;
cli();
listenStart(); listenStart();
FrontStorage *currentFrontPtr; if (firstUnHandledFront == nullptr)
currentFrontPtr = subBuffer.pop();
if (currentFrontPtr == nullptr)
{ {
isSubBufferOverflow = false; isSubBufferOverflow = false;
interrupts(); SREG = oldSREG;
return; return;
} // Если данных нет - ничего не делаем } // Если данных нет - ничего не делаем
currentFront = *currentFrontPtr; currentFront = *((FrontStorage *)firstUnHandledFront); // найти следующий необработанный фронт/спад
interrupts(); SREG = oldSREG;
if (currentFront.next == nullptr)
{
isRecive = false;
return;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////////////
if (currentFront.dir)
{ // Если __/``` ↑
if (currentFront.time - prevRise > riseTimeMax / 4 || highCount || lowCount)
{ // комплексный фикс рваной единицы
risePeriod = currentFront.time - prevRise;
highTime = currentFront.time - prevFall;
lowTime = prevFall - prevRise;
prevRise = currentFront.time;
if (
risePeriod > UINT32_MAX - IR_timeout * 10 ||
highTime > UINT32_MAX - IR_timeout * 10 ||
lowTime > UINT32_MAX - IR_timeout * 10 ||
prevRise > UINT32_MAX - IR_timeout * 10)
{
#ifdef IRDEBUG
errPulse(down, 50);
// Serial.print("\n");
// Serial.print("risePeriod: ");
// Serial.println(risePeriod);
// Serial.print("highTime: ");
// Serial.println(highTime);
// Serial.print("lowTime: ");
// Serial.println(lowTime);
// Serial.print("prevRise: ");
// Serial.println(prevRise);
#endif
}
}
else
{
errors.other++;
}
}
else
{ // Если ```\__ ↓
if (currentFront.time - prevFall > riseTimeMin / 4)
{
prevFall = currentFront.time;
}
else
{
errors.other++;
}
}
#ifdef IRDEBUG
// goto END; //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#endif
//----------------------------------------------------------------------------------
#ifdef IRDEBUG
digitalWrite(errOut, currentFront.dir);
#endif
if (currentFront.time > prevRise && currentFront.time - prevRise > IR_timeout * 2 && !isRecive) if (currentFront.time > prevRise && currentFront.time - prevRise > IR_timeout * 2 && !isRecive)
{ // первый { // первый
#ifdef IRDEBUG
errPulse(up, 50);
errPulse(down, 50);
errPulse(up, 150);
errPulse(down, 150);
#endif
preambFrontCounter = preambFronts - 1U; preambFrontCounter = preambFronts - 1U;
isPreamb = true;
isRecive = true; if (!currentFront.dir)
isWrongPack = false; {
#ifdef IRDEBUG_INFO
// Serial.print(" currentFront.time: "); Serial.print(currentFront.time);
// Serial.print(" currentFront.dir: "); Serial.print(currentFront.dir ? "UP" : "DOWN");
// Serial.print(" next: "); Serial.print(currentFront.next == nullptr);
// Serial.print(" prevRise: "); Serial.print(prevRise);
// Serial.print(" SUB: "); Serial.println(currentFront.time - prevRise);
#endif
isRecive = true;
isWrongPack = false;
}
} }
//-------------------------------------------------------------------------------------------------------
if (preambFrontCounter) if (preambFrontCounter)
{ // в преамбуле { // в преамбуле
#ifdef IRDEBUG uint32_t risePeriod;
Serial.print("risePeriod: "); risePeriod = currentFront.time - prevRise;
Serial.println(risePeriod);
#endif
if (currentFront.dir && risePeriod < IR_timeout) if (currentFront.dir && risePeriod < IR_timeout)
{ // __/``` ↑ и мы в внутри пакета { // __/``` ↑ и мы в внутри пакета
if (risePeriod < riseTimeMin / 2) if (risePeriod < riseTimeMin << 1)
{ // fix рваной единицы { // fix рваной единицы
preambFrontCounter += 2; preambFrontCounter += 2;
errors.other++; errors.other++;
#ifdef IRDEBUG
errPulse(down, 350);
#endif
} }
else else
{ {
@ -249,183 +161,196 @@ void IR_DecoderRaw::tick()
{ {
if (isPreamb) if (isPreamb)
{ // первый фронт после { // первый фронт после
// gotTune.set(riseSyncTime); // gotTune.set(riseSyncTime);
isPreamb = false;
#ifdef IRDEBUG
errPulse(up, 50);
errPulse(down, 50);
#endif
prevRise += risePeriod / 2;
// prevRise = currentFront.time + riseTime;
goto END;
} }
isPreamb = false;
} }
if (isPreamb)
{
goto END;
}
if (risePeriod > IR_timeout || isBufferOverflow || risePeriod < riseTimeMin || isWrongPack)
// ~Мы в пределах таймаута и буффер не переполнен и fix дроблёных единиц
{
goto END;
}
// определить направление фронта // определить направление фронта
if (currentFront.dir) if (currentFront.dir)
{ // Если __/``` ↑ { // Если __/``` ↑
highCount = 0;
lowCount = 0; uint16_t risePeriod = currentFront.time - prevRise;
allCount = 0; uint16_t highTime = currentFront.time - prevFall;
uint16_t lowTime = prevFall - prevRise;
int8_t highCount = 0;
int8_t lowCount = 0;
int8_t allCount = 0;
bool invertErr = false; bool invertErr = false;
if (!isPreamb)
{
if (risePeriod < IR_timeout && !isBufferOverflow && risePeriod > riseTimeMin && !isWrongPack)
{
// Мы в пределах таймаута и буффер не переполнен и fix дроблёных единиц
if (aroundRise(risePeriod))
{ // тактирование есть, сигнал хороший - без ошибок(?)
if (highTime > riseTimeMin >> 1)
{ // 1
#ifdef IRDEBUG #ifdef IRDEBUG
Serial.print("\n"); digitalWrite(wrHigh, 1);
#endif
writeToBuffer(HIGH);
}
else
{ // 0
#ifdef IRDEBUG
digitalWrite(wrLow, 1);
#endif
writeToBuffer(LOW);
}
}
else
{ // пропущены такты! сигнал средний // ошибка пропуска
highCount = ceil_div(highTime, riseTime); // предполагаемое колличество HIGH битов
lowCount = ceil_div(lowTime, riseTime); // предполагаемое колличество LOW битов
allCount = ceil_div(risePeriod, riseTime); // предполагаемое колличество всего битов
Serial.print("wrCounter: "); if (highCount == 0 && highTime > riseTime / 3)
Serial.println(wrCounter++); { // fix короткой единицы (?)после пропуска нулей(?)
highCount++;
errors.other++;
#ifdef IRDEBUG
errPulse(errOut, 2);
#endif
}
Serial.print("risePeriod: "); if (lowCount + highCount > allCount)
Serial.println(risePeriod); { // fix ошибочных сдвигов
if (lowCount > highCount)
{ // Лишние нули
lowCount = allCount - highCount;
errors.lowSignal += lowCount;
#ifdef IRDEBUG
errPulse(errOut, 3);
#endif
}
else if (lowCount < highCount)
{ // Лишние единицы
highCount = allCount - lowCount;
errors.highSignal += highCount;
#ifdef IRDEBUG
errPulse(errOut, 4);
#endif
// неизвестный случай Инверсит след бит или соседние
// Очень редко
// TODO: Отловить проверить
}
else if (lowCount == highCount)
{
invertErr = true;
// Serial.print("...");
errors.other += allCount;
}
// errorCounter += allCount;
}
Serial.print("highTime: "); // errorCounter += allCount;
Serial.println(highTime); // errors.other+=allCount;
if (lowCount < highCount)
{
errors.highSignal += highCount;
}
else
{
errors.lowSignal += lowCount;
}
Serial.print("lowTime: "); #ifdef IRDEBUG
Serial.println(lowTime); errPulse(errOut, 1);
#endif #endif
if (aroundRise(risePeriod)) for (int8_t i = 0; i < lowCount && 8 - i; i++)
{ // тактирование есть, сигнал хороший - без ошибок(?) { // отправка LOW битов, если есть
if (i == lowCount - 1 && invertErr)
{
invertErr = false;
writeToBuffer(!LOW);
#ifdef IRDEBUG
digitalWrite(wrLow, 1);
#endif
}
else
{
writeToBuffer(LOW);
#ifdef IRDEBUG
digitalWrite(wrLow, 1);
#endif
}
}
if (highTime > lowTime) for (int8_t i = 0; i < highCount && 8 - i; i++)
{ // 1 { // отправка HIGH битов, если есть
if (i == highCount - 1 && invertErr)
{
invertErr = false;
writeToBuffer(!HIGH);
#ifdef IRDEBUG #ifdef IRDEBUG
errPulse(wrHigh, 1); digitalWrite(wrLow, 1);
#endif #endif
writeToBuffer(HIGH); }
} else
else {
{ // 0 writeToBuffer(HIGH);
#ifdef IRDEBUG #ifdef IRDEBUG
errPulse(wrLow, 1); digitalWrite(wrHigh, 1);
#endif
}
}
}
#ifdef IRDEBUG
digitalWrite(wrHigh, 0);
digitalWrite(wrLow, 0);
#endif #endif
writeToBuffer(LOW);
} }
} }
if (risePeriod > riseTimeMax / 2 || highCount || lowCount)
{ // комплексный фикс рваной единицы
prevPrevRise = prevRise;
prevRise = currentFront.time;
}
else else
{ // пропущены такты! сигнал средний // ошибка пропуска {
highCount = ceil_div(highTime, riseTime); // предполагаемое колличество HIGH битов errors.other++;
lowCount = ceil_div(lowTime, riseTime); // предполагаемое колличество LOW битов
allCount = ceil_div(risePeriod, riseTime); // предполагаемое колличество всего битов
if (highCount == 0 && highTime > riseTime / 3)
{ // fix короткой единицы (?)после пропуска нулей(?)
highCount++;
errors.other++;
#ifdef IRDEBUG #ifdef IRDEBUG
errPulse(up, 50); errPulse(errOut, 5);
#endif #endif
}
if (lowCount + highCount > allCount)
{ // fix ошибочных сдвигов
if (lowCount > highCount)
{ // Лишние нули
lowCount = allCount - highCount;
errors.lowSignal += lowCount;
#ifdef IRDEBUG
// errPulse(errOut, 3);
errPulse(down, 40);
errPulse(up, 10);
errPulse(down, 40);
#endif
}
else if (lowCount < highCount)
{ // Лишние единицы
highCount = allCount - lowCount;
errors.highSignal += highCount;
#ifdef IRDEBUG
errPulse(down, 10);
errPulse(up, 40);
errPulse(down, 10);
// errPulse(errOut, 4);
#endif
// неизвестный случай Инверсит след бит или соседние
// Очень редко
// TODO: Отловить проверить
}
else if (lowCount == highCount)
{
#ifdef IRDEBUG
errPulse(down, 40);
errPulse(up, 40);
errPulse(down, 40);
#endif
invertErr = true;
// Serial.print("...");
errors.other += allCount;
}
// errorCounter += allCount;
}
// errorCounter += allCount;
// errors.other+=allCount;
if (lowCount < highCount)
{
errors.highSignal += highCount;
}
else
{
errors.lowSignal += lowCount;
}
// errPulse(errOut, 1);
for (int8_t i = 0; i < lowCount && 8 - i; i++)
{ // отправка LOW битов, если есть
if (i == lowCount - 1 && invertErr)
{
invertErr = false;
writeToBuffer(HIGH);
#ifdef IRDEBUG
errPulse(wrHigh, 1);
#endif
}
else
{
writeToBuffer(LOW);
#ifdef IRDEBUG
errPulse(wrLow, 1);
#endif
}
}
for (int8_t i = 0; i < highCount && 8 - i; i++)
{ // отправка HIGH битов, если есть
if (i == highCount - 1 && invertErr)
{
invertErr = false;
writeToBuffer(LOW);
#ifdef IRDEBUG
errPulse(wrLow, 1);
#endif
}
else
{
writeToBuffer(HIGH);
#ifdef IRDEBUG
errPulse(wrHigh, 1);
#endif
}
}
} }
} }
else else
{ // Если ```\__ ↓ { // Если ```\__ ↓
if (currentFront.time - prevFall > riseTimeMin)
{
prevPrevFall = prevFall;
prevFall = currentFront.time;
}
else
{
#ifdef IRDEBUG
// errPulse(errOut, 5);
#endif
}
} }
//////////////////////////////////////////////////////////////////////////////////////////////////////////// if (isPreamb && preambFrontCounter <= 0)
END:; {
prevRise = currentFront.time + riseTime;
}
#ifdef IRDEBUG
digitalWrite(writeOp, isPreamb);
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////
oldSREG = SREG;
cli();
if (firstUnHandledFront != nullptr)
{
firstUnHandledFront = firstUnHandledFront->next; // переместить флаг на следующий элемент для обработки (next or nullptr)
}
SREG = oldSREG;
} }
void IR_DecoderRaw::writeToBuffer(bool bit) void IR_DecoderRaw::writeToBuffer(bool bit)
@ -554,7 +479,7 @@ void IR_DecoderRaw::writeToBuffer(bool bit)
if (packSize && (i_dataBuffer == packSize * bitPerByte)) if (packSize && (i_dataBuffer == packSize * bitPerByte))
{ // Конец { // Конец
#ifdef IRDEBUG_INFO #ifdef IRDEBUG_INFO
Serial.print(" END DATA " + crcCheck(packSize - crcBytes, crcValue) ? "OK " : "ERR "); Serial.print(" END DATA ");
#endif #endif
packInfo.buffer = dataBuffer; packInfo.buffer = dataBuffer;
@ -565,34 +490,6 @@ void IR_DecoderRaw::writeToBuffer(bool bit)
isRecive = false; isRecive = false;
isAvailable = crcCheck(packSize - crcBytes, crcValue); isAvailable = crcCheck(packSize - crcBytes, crcValue);
#ifdef BRUTEFORCE_CHECK
if (!isAvailable) // Исправление первого бита // Очень большая затычка...
for (size_t i = 0; i < min(uint16_t(packSize - crcBytes * 2U), uint16_t(dataByteSizeMax)); ++i)
{
for (int j = 0; j < 8; ++j)
{
// инвертируем бит
dataBuffer[i] ^= 1 << j;
isAvailable = crcCheck(min(uint16_t(packSize - crcBytes), uint16_t(dataByteSizeMax - 1U)), crcValue);
// обратно инвертируем бит в исходное состояние
if (isAvailable)
{
#ifdef IRDEBUG_INFO
Serial.println("!!!INV!!!");
#endif
goto OUT_BRUTEFORCE;
}
else
{
dataBuffer[i] ^= 1 << j;
}
}
}
OUT_BRUTEFORCE:;
#endif
} }
} }

View File

@ -1,18 +1,15 @@
#pragma once #pragma once
#include "IR_config.h" #include "IR_config.h"
#include "RingBuffer.h"
// #define IRDEBUG // #define IRDEBUG
#ifdef IRDEBUG #ifdef IRDEBUG
#define wrHigh PA1 // Запись HIGH инициирована // green #define wrHigh A3 // Запись HIGH инициирована // green
#define wrLow PA0 // Запись LOW инициирована // blue #define wrLow A3 // Запись LOW инициирована // blue
#define writeOp PA5 // Операция записи, 1 пульс для 0 и 2 для 1 // orange #define writeOp 13 // Операция записи, 1 пульс для 0 и 2 для 1 // orange
// Исправленные ошибки // purle // Исправленные ошибки // purle
// 1 пульс: fix // 1 пульс: fix
#define errOut PA4 #define errOut A3
#define up PA3
#define down PA2
#endif #endif
///////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////
@ -23,7 +20,6 @@
#define riseTimeMin (riseTime - riseTolerance) #define riseTimeMin (riseTime - riseTolerance)
#define aroundRise(t) (riseTimeMin < t && t < riseTimeMax) #define aroundRise(t) (riseTimeMin < t && t < riseTimeMax)
#define IR_timeout (riseTimeMax * (8 + syncBits + 1)) // us // таймаут в 8 data + 3 sync + 1 #define IR_timeout (riseTimeMax * (8 + syncBits + 1)) // us // таймаут в 8 data + 3 sync + 1
constexpr uint16_t IR_ResponseDelay = ((uint16_t)(((bitTime+riseTolerance) * (8 + syncBits + 1))*2.7735))/1000;
class IR_Encoder; class IR_Encoder;
class IR_DecoderRaw : virtual public IR_FOX class IR_DecoderRaw : virtual public IR_FOX
@ -33,22 +29,42 @@ class IR_DecoderRaw : virtual public IR_FOX
protected: protected:
PackInfo packInfo; PackInfo packInfo;
IR_Encoder *encoder; // Указатель на парный передатчик IR_Encoder *encoder; // Указатель на парный передатчик
bool availableRaw(); bool availableRaw()
{
if (isAvailable)
{
isAvailable = false;
return true;
}
else
{
return false;
}
};
public: public:
const uint8_t isrPin; // Пин прерывания
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
/// @brief Конструктор /// @brief Конструктор
/// @param pin Номер вывода прерывания/данных от приёмника (2 или 3 для atmega 328p) /// @param isrPin Номер вывода прерывания/данных от приёмника (2 или 3 для atmega 328p)
/// @param addr Адрес приёмника /// @param addr Адрес приёмника
/// @param encPair Указатель на передатчик, работающий в паре /// @param encPair Указатель на передатчик, работающий в паре
IR_DecoderRaw(const uint8_t pin, uint16_t addr, IR_Encoder *encPair = nullptr); IR_DecoderRaw(const uint8_t isrPin, uint16_t addr, IR_Encoder *encPair = nullptr);
void isr(); // Функция прерывания void isr(); // Функция прерывания
void tick(); // Обработка приёмника, необходима для работы void tick(); // Обработка приёмника, необходима для работы
inline bool isOverflow() { return isBufferOverflow; }; // Буффер переполнился bool isOverflow() { return isBufferOverflow; }; // Буффер переполнился
bool isSubOverflow(); bool isSubOverflow()
volatile inline bool isReciving() { return isRecive; }; // Возвращает true, если происходит приём пакета {
uint8_t oldSREG = SREG;
cli();
volatile bool ret = isSubBufferOverflow;
SREG = oldSREG;
return ret;
};
bool isReciving() { return isBufferOverflow; }; // Возвращает true, если происходит приём пакета
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
private: private:
@ -66,38 +82,23 @@ private:
uint16_t riseSyncTime = bitTime; // Подстраиваемое время бита в мкс uint16_t riseSyncTime = bitTime; // Подстраиваемое время бита в мкс
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
volatile uint32_t currentSubBufferIndex; // Счетчик текущей позиции во вспомогательном буфере фронтов/спадов volatile uint8_t currentSubBufferIndex; // Счетчик текущей позиции во вспомогательном буфере фронтов/спадов
struct FrontStorage struct FrontStorage
{ // Структура для хранения времени и направления фронта/спада { // Структура для хранения времени и направления фронта/спада
volatile uint32_t time = 0; // Время volatile uint32_t time = 0; // Время
volatile bool dir = false; // Направление (true = ↑; false = ↓) volatile bool dir = false; // Направление (true = ↑; false = ↓)
// volatile FrontStorage *next = nullptr; // Указатель на следующий связанный фронт/спад, или nullptr если конец volatile FrontStorage *next = nullptr; // Указатель на следующий связанный фронт/спад, или nullptr если конец
}; };
volatile FrontStorage *lastFront = nullptr; // Указатель последнего фронта/спада volatile FrontStorage *lastFront = nullptr; // Указатель последнего фронта/спада
volatile FrontStorage *firstUnHandledFront = nullptr; // Указатель первого необработанного фронта/спада volatile FrontStorage *firstUnHandledFront = nullptr; // Указатель первого необработанного фронта/спада
// volatile FrontStorage subBuffer[subBufferSize]; // вспомогательный буфер для хранения необработанных фронтов/спадов volatile FrontStorage subBuffer[subBufferSize]; // вспомогательный буфер для хранения необработанных фронтов/спадов
RingBuffer<FrontStorage, subBufferSize> subBuffer;
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
uint8_t dataBuffer[dataByteSizeMax]{0}; // Буффер данных uint8_t dataBuffer[dataByteSizeMax]{0}; // Буффер данных
volatile uint32_t prevRise, prevPrevRise, prevFall, prevPrevFall; // Время предыдущих фронтов/спадов uint32_t prevRise, prevPrevRise, prevFall, prevPrevFall; // Время предыдущих фронтов/спадов
uint16_t errorCounter = 0; // Счётчик ошибок
volatile uint32_t risePeriod; int8_t preambFrontCounter = 0; // Счётчик __/``` ↑ преамбулы
volatile uint32_t highTime; int16_t bufBitPos = 0; // Позиция для записи бита в буффер
volatile uint32_t lowTime;
uint32_t oldTime;
uint16_t wrongCounter;
int8_t highCount;
int8_t lowCount;
int8_t allCount;
uint16_t errorCounter = 0; // Счётчик ошибок
int8_t preambFrontCounter = 0; // Счётчик __/``` ↑ преамбулы
int16_t bufBitPos = 0; // Позиция для записи бита в буффер
private: private:
void listenStart(); // @brief Слушатель для работы isReciving() void listenStart(); // @brief Слушатель для работы isReciving()
@ -129,8 +130,7 @@ private:
uint16_t ceil_div(uint16_t val, uint16_t divider); uint16_t ceil_div(uint16_t val, uint16_t divider);
#ifdef IRDEBUG #ifdef IRDEBUG
uint32_t wrCounter;
inline void errPulse(uint8_t pin, uint8_t count); inline void errPulse(uint8_t pin, uint8_t count);
inline void infoPulse(uint8_t pin, uint8_t count); inline void infoPulse(uint8_t pin, uint8_t count);
#endif #endif
}; };

View File

@ -5,12 +5,8 @@
#define ISR_Out 10 #define ISR_Out 10
#define TestOut 13 #define TestOut 13
IR_Encoder *IR_Encoder::head = nullptr; IR_Encoder::IR_Encoder(uint16_t addr, IR_DecoderRaw *decPair = nullptr)
IR_Encoder *IR_Encoder::last = nullptr;
IR_Encoder::IR_Encoder(uint8_t pin, uint16_t addr, IR_DecoderRaw *decPair, bool autoHandle)
{ {
setPin(pin);
id = addr; id = addr;
this->decPair = decPair; this->decPair = decPair;
signal = noSignal; signal = noSignal;
@ -18,7 +14,8 @@ IR_Encoder::IR_Encoder(uint8_t pin, uint16_t addr, IR_DecoderRaw *decPair, bool
#if disablePairDec #if disablePairDec
if (decPair != nullptr) if (decPair != nullptr)
{ {
blindDecoders = new IR_DecoderRaw *[1]{decPair}; blindDecoders = new IR_DecoderRaw *[1]
{ decPair };
decodersCount = 1; decodersCount = 1;
} }
#endif #endif
@ -26,94 +23,7 @@ IR_Encoder::IR_Encoder(uint8_t pin, uint16_t addr, IR_DecoderRaw *decPair, bool
{ {
decPair->encoder = this; decPair->encoder = this;
} }
if (autoHandle)
{
if (IR_Encoder::head == nullptr)
{
IR_Encoder::head = this;
}
if (last != nullptr)
{
last->next = this;
}
last = this;
}
}; };
HardwareTimer* IR_Encoder::IR_Timer = nullptr;
inline HardwareTimer* IR_Encoder::get_IR_Timer(){return IR_Encoder::IR_Timer;}
void IR_Encoder::begin(HardwareTimer* timer, uint8_t channel, IRQn_Type IRQn, uint8_t priority, void(*isrCallback)()){
IR_Timer = timer;
if(IR_Timer == nullptr) return;
IR_Timer->setOverflow(carrierFrec * 2, HERTZ_FORMAT);
IR_Timer->attachInterrupt(channel, (isrCallback == nullptr ? IR_Encoder::isr : isrCallback));
NVIC_SetPriority(IRQn, priority);
IR_Timer->resume();
}
void IR_Encoder::enable()
{
bool exist = false;
IR_Encoder *current = IR_Encoder::head;
while (current != nullptr)
{
exist = (current == this);
if (exist) break;
current = current->next;
}
if (!exist)
{
if (IR_Encoder::head == nullptr)
{
IR_Encoder::head = this;
last = this;
}
else
{
last->next = this;
last = this;
}
this->next = nullptr; // Указываем, что следующий за этим элементом — nullptr
}
pinMode(pin, OUTPUT);
}
void IR_Encoder::disable()
{
IR_Encoder *current = IR_Encoder::head;
IR_Encoder *prev = nullptr;
while (current != nullptr)
{
if (current == this) break;
prev = current;
current = current->next;
}
if (current != nullptr) // Элемент найден в списке
{
if (prev != nullptr)
{
prev->next = current->next; // Убираем текущий элемент из списка
}
else
{
IR_Encoder::head = current->next; // Удаляемый элемент был первым
}
if (current == last)
{
last = prev; // Если удаляется последний элемент, обновляем last
}
}
pinMode(pin, INPUT);
}
void IR_Encoder::setBlindDecoders(IR_DecoderRaw *decoders[], uint8_t count) void IR_Encoder::setBlindDecoders(IR_DecoderRaw *decoders[], uint8_t count)
{ {
#if disablePairDec #if disablePairDec
@ -124,18 +34,24 @@ void IR_Encoder::setBlindDecoders(IR_DecoderRaw *decoders[], uint8_t count)
blindDecoders = decoders; blindDecoders = decoders;
} }
IR_Encoder::~IR_Encoder(){}; IR_Encoder::~IR_Encoder()
void IR_Encoder::sendData(uint16_t addrTo, uint8_t dataByte, bool needAccept)
{ {
sendData(addrTo, &dataByte, 1, needAccept); delete[] bitLow;
delete[] bitHigh;
};
void IR_Encoder::sendData(uint16_t addrTo, uint8_t dataByte, bool needAccept = false)
{
uint8_t *dataPtr = new uint8_t[1];
dataPtr[0] = dataByte;
sendData(addrTo, dataPtr, 1, needAccept);
delete[] dataPtr;
} }
void IR_Encoder::sendData(uint16_t addrTo, uint8_t *data, uint8_t len, bool needAccept){ void IR_Encoder::sendData(uint16_t addrTo, uint8_t *data = nullptr, uint8_t len = 0, bool needAccept = false){
sendDataFULL(id, addrTo, data, len, needAccept); sendData(id, addrTo, data, len, needAccept);
} }
void IR_Encoder::sendData(uint16_t addrFrom, uint16_t addrTo, uint8_t *data = nullptr, uint8_t len = 0, bool needAccept = false)
void IR_Encoder::sendDataFULL(uint16_t addrFrom, uint16_t addrTo, uint8_t *data, uint8_t len, bool needAccept)
{ {
if (len > bytePerPack) if (len > bytePerPack)
{ {
@ -179,7 +95,7 @@ void IR_Encoder::sendDataFULL(uint16_t addrFrom, uint16_t addrTo, uint8_t *data,
rawSend(sendBuffer, packSize); rawSend(sendBuffer, packSize);
} }
void IR_Encoder::sendAccept(uint16_t addrTo, uint8_t customByte) void IR_Encoder::sendAccept(uint16_t addrTo, uint8_t customByte = 0)
{ {
constexpr uint8_t packsize = msgBytes + addrBytes + 1U + crcBytes; constexpr uint8_t packsize = msgBytes + addrBytes + 1U + crcBytes;
memset(sendBuffer, 0x00, dataByteSizeMax); memset(sendBuffer, 0x00, dataByteSizeMax);
@ -228,13 +144,12 @@ void IR_Encoder::sendBack(uint8_t data)
{ {
_sendBack(false, 0, &data, 1); _sendBack(false, 0, &data, 1);
} }
void IR_Encoder::sendBack(uint8_t *data = nullptr, uint8_t len = 0)
void IR_Encoder::sendBack(uint8_t *data, uint8_t len)
{ {
_sendBack(false, 0, data, len); _sendBack(false, 0, data, len);
} }
void IR_Encoder::sendBackTo(uint16_t addrTo, uint8_t *data, uint8_t len) void IR_Encoder::sendBackTo(uint16_t addrTo, uint8_t *data = nullptr, uint8_t len = 0)
{ {
_sendBack(true, addrTo, data, len); _sendBack(true, addrTo, data, len);
} }
@ -248,7 +163,7 @@ void IR_Encoder::_sendBack(bool isAdressed, uint16_t addrTo, uint8_t *data, uint
memset(sendBuffer, 0x00, dataByteSizeMax); memset(sendBuffer, 0x00, dataByteSizeMax);
uint8_t dataStart = msgBytes + addrBytes + (isAdressed ? addrBytes : 0); uint8_t dataStart = msgBytes + addrBytes + (isAdressed ? addrBytes : 0);
uint8_t packSize = msgBytes + addrBytes + (isAdressed ? addrBytes : 0) + min(uint8_t(1), len) + crcBytes; uint8_t packSize = msgBytes + addrBytes + (isAdressed ? addrBytes : 0) + min(1, len) + crcBytes;
uint8_t msgType = uint8_t msgType =
((isAdressed ? IR_MSG_BACK_TO : IR_MSG_BACK) << 5) | ((packSize) & (IR_MASK_MSG_INFO >> 1)); ((isAdressed ? IR_MSG_BACK_TO : IR_MSG_BACK) << 5) | ((packSize) & (IR_MASK_MSG_INFO >> 1));
@ -284,10 +199,6 @@ void IR_Encoder::setDecoder_isSending()
for (uint8_t i = 0; i < decodersCount; i++) for (uint8_t i = 0; i < decodersCount; i++)
{ {
blindDecoders[i]->isPairSending ^= id; blindDecoders[i]->isPairSending ^= id;
// Serial.print("setDecoder_isSending() id = ");
// Serial.print(id);
// Serial.print(" isPairSending = ");
// Serial.println(blindDecoders[i]->isPairSending);
} }
} }
} }
@ -299,10 +210,10 @@ void IR_Encoder::rawSend(uint8_t *ptr, uint8_t len)
// TODO: Обработка повторной отправки // TODO: Обработка повторной отправки
return; return;
} }
// Serial.println("START");
setDecoder_isSending(); setDecoder_isSending();
// noInterrupts(); cli();
sendLen = len; sendLen = len;
toggleCounter = preambToggle; // Первая генерация для первого signal toggleCounter = preambToggle; // Первая генерация для первого signal
@ -319,29 +230,16 @@ void IR_Encoder::rawSend(uint8_t *ptr, uint8_t len)
currentBitSequence = bitHigh; currentBitSequence = bitHigh;
isSending = true; isSending = true;
// interrupts(); sei();
} }
void IR_Encoder::isr() void IR_Encoder::isr()
{
IR_Encoder *current = IR_Encoder::head;
while (current != nullptr)
{
current->_isr();
current = current->next;
}
}
void IR_Encoder::_isr()
{ {
if (!isSending) if (!isSending)
return; return;
ir_out_virtual = !ir_out_virtual && state; ir_out_virtual = !ir_out_virtual && state;
port->ODR &= ~(mask);
port->ODR |= mask & (ir_out_virtual ? (uint16_t)0xFFFF : (uint16_t)0x0000);
if (toggleCounter) if (toggleCounter)
{ {
toggleCounter--; toggleCounter--;
@ -356,9 +254,7 @@ void IR_Encoder::_isr()
// сброс счетчиков // сброс счетчиков
// ... // ...
isSending = false; isSending = false;
// Serial.println("STOP");
setDecoder_isSending(); setDecoder_isSending();
// Serial.println();
return; return;
break; break;
@ -439,6 +335,32 @@ void IR_Encoder::_isr()
} }
} }
void old()
{ ///////////////////////////////////////////////////////
// void IR_Encoder::rawSend(uint8_t* ptr, uint8_t len) {
// /*tmp*/bool LOW_FIRST = false;/*tmp*/
// if (decoders != nullptr) { decoders->isPairSending = true; }
// bool prev = 1;
// bool next;
// send_EMPTY(preambPulse); // преамбула
// for (uint16_t byteNum = 0; byteNum < len; byteNum++) {
// sendByte(ptr[byteNum], &prev, LOW_FIRST);
// if (byteNum < len - 1) {
// next = ptr[byteNum + 1] & (LOW_FIRST ? 0b00000001 : 0b10000000);
// } else {
// next = 0;
// }
// addSync(&prev, &next);
// }
// if (decoders != nullptr) { decoders->isPairSending = false; }
// }
}
void IR_Encoder::sendByte(uint8_t byte, bool *prev, bool LOW_FIRST) void IR_Encoder::sendByte(uint8_t byte, bool *prev, bool LOW_FIRST)
{ {
uint8_t mask = LOW_FIRST ? 0b00000001 : 0b10000000; uint8_t mask = LOW_FIRST ? 0b00000001 : 0b10000000;
@ -476,16 +398,30 @@ void IR_Encoder::addSync(bool *prev, bool *next)
} }
} }
uint8_t IR_Encoder::bitHigh[2] = { void IR_Encoder::send_HIGH(bool prevBite = 1)
(bitPauseTakts) * 2 - 1, {
(bitActiveTakts) * 2 - 1};
uint8_t IR_Encoder::bitLow[2] = {
(bitPauseTakts / 2 + bitActiveTakts) * 2 - 1,
(bitPauseTakts)-1};
// uint8_t* IR_Encoder::bitHigh = new uint8_t[2]{ // if (/* prevBite */1) {
// (bitPauseTakts) * 2 - 0, // meanderBlock(bitPauseTakts * 2, halfPeriod, LOW);
// (bitActiveTakts) * 2 - 0}; // meanderBlock(bitActiveTakts, halfPeriod, HIGH);
// uint8_t* IR_Encoder::bitLow = new uint8_t[2]{ // } else { // более короткий HIGH после нуля
// (bitPauseTakts/2 + bitActiveTakts) * 2 - 0, // meanderBlock(bitTakts - (bitActiveTakts - bitPauseTakts), halfPeriod, LOW);
// (bitPauseTakts) - 0}; // meanderBlock(bitActiveTakts - bitPauseTakts, halfPeriod, HIGH);
// }
}
void IR_Encoder::send_LOW()
{
// meanderBlock(bitPauseTakts, halfPeriod, LOW);
// meanderBlock(bitActiveTakts, halfPeriod, LOW);
// meanderBlock(bitPauseTakts, halfPeriod, HIGH);
}
void IR_Encoder::send_EMPTY(uint8_t count)
{
// for (size_t i = 0; i < count * 2; i++) {
// meanderBlock((bitPauseTakts * 2 + bitActiveTakts), halfPeriod, prevPreambBit);
// prevPreambBit = !prevPreambBit;
// }
// meanderBlock(bitPauseTakts * 2 + bitActiveTakts, halfPeriod, 0); //TODO: Отодвинуть преамбулу
}

View File

@ -7,33 +7,49 @@ class IR_DecoderRaw;
class IR_Encoder : public IR_FOX class IR_Encoder : public IR_FOX
{ {
friend IR_DecoderRaw; friend IR_DecoderRaw;
static IR_Encoder *head;
static IR_Encoder *last;
IR_Encoder *next;
public: public:
static HardwareTimer* IR_Timer;
private: private:
// uint16_t id; /// @brief Адрес передатчика // uint16_t id; /// @brief Адрес передатчика
public: public:
/// @brief Класс передатчика /// @brief Класс передатчика
/// @param addr Адрес передатчика /// @param addr Адрес передатчика
/// @param pin Вывод передатчика /// @param pin Вывод передатчика
/// @param tune Подстройка несущей частоты
/// @param decPair Приёмник, для которого отключается приём в момент передачи передатчиком /// @param decPair Приёмник, для которого отключается приём в момент передачи передатчиком
IR_Encoder(uint8_t pin, uint16_t addr = 0, IR_DecoderRaw *decPair = nullptr, bool autoHandle = true); IR_Encoder(uint16_t addr, IR_DecoderRaw *decPair = nullptr);
static void isr();
static void begin(HardwareTimer* timer, uint8_t channel, IRQn_Type IRQn, uint8_t priority, void(*isrCallback)() = nullptr);
static HardwareTimer* get_IR_Timer();
void enable(); static void timerSetup()
void disable(); {
// TIMER2 Ini
uint8_t oldSREG = SREG; // Save global interupts settings
cli();
// DDRB |= (1 << PORTB3); //OC2A (17)
TCCR2A = 0;
TCCR2B = 0;
void setBlindDecoders(IR_DecoderRaw *decoders[], uint8_t count); // TCCR2A |= (1 << COM2A0); //Переключение состояния
TCCR2A |= (1 << WGM21); // Clear Timer On Compare (Сброс по совпадению)
TCCR2B |= (1 << CS20); // Предделитель 1
TIMSK2 |= (1 << OCIE2A); // Прерывание по совпадению
OCR2A = /* 465 */ ((F_CPU / (38000 * 2)) - 2); // 38кГц
SREG = oldSREG; // Return interrupt settings
}
static void timerOFFSetup()
{
TIMSK2 &= ~(1 << OCIE2A); // Прерывание по совпадению выкл
}
void IR_Encoder::setBlindDecoders(IR_DecoderRaw *decoders[], uint8_t count);
void rawSend(uint8_t *ptr, uint8_t len); void rawSend(uint8_t *ptr, uint8_t len);
void sendData(uint16_t addrTo, uint8_t dataByte, bool needAccept = false); void sendData(uint16_t addrTo, uint8_t dataByte, bool needAccept = false);
void sendData(uint16_t addrTo, uint8_t *data = nullptr, uint8_t len = 0, bool needAccept = false); void sendData(uint16_t addrTo, uint8_t *data = nullptr, uint8_t len = 0, bool needAccept = false);
void sendDataFULL(uint16_t addrFrom, uint16_t addrTo, uint8_t *data = nullptr, uint8_t len = 0, bool needAccept = false); void sendData(uint16_t addrFrom, uint16_t addrTo, uint8_t *data = nullptr, uint8_t len = 0, bool needAccept = false);
void sendAccept(uint16_t addrTo, uint8_t customByte = 0); void sendAccept(uint16_t addrTo, uint8_t customByte = 0);
void sendRequest(uint16_t addrTo); void sendRequest(uint16_t addrTo);
@ -42,15 +58,15 @@ public:
void sendBack(uint8_t *data = nullptr, uint8_t len = 0); void sendBack(uint8_t *data = nullptr, uint8_t len = 0);
void sendBackTo(uint16_t addrTo, uint8_t *data = nullptr, uint8_t len = 0); void sendBackTo(uint16_t addrTo, uint8_t *data = nullptr, uint8_t len = 0);
void isr();
~IR_Encoder(); ~IR_Encoder();
volatile bool ir_out_virtual; volatile bool ir_out_virtual;
void _isr();
private: private:
void _sendBack(bool isAdressed, uint16_t addrTo, uint8_t *data, uint8_t len); void IR_Encoder::_sendBack(bool isAdressed, uint16_t addrTo, uint8_t *data, uint8_t len);
void setDecoder_isSending(); void IR_Encoder::setDecoder_isSending();
void sendByte(uint8_t byte, bool *prev, bool LOW_FIRST); void sendByte(uint8_t byte, bool *prev, bool LOW_FIRST);
void addSync(bool *prev, bool *next); void addSync(bool *prev, bool *next);
void send_HIGH(bool = 1); void send_HIGH(bool = 1);
@ -90,9 +106,12 @@ private:
uint8_t low; uint8_t low;
uint8_t high; uint8_t high;
}; };
static uint8_t bitHigh[2]; static inline uint8_t *bitHigh = new uint8_t[2]{
static uint8_t bitLow[2]; (bitPauseTakts * 2) * 2 - 1,
(bitActiveTakts) * 2 - 1};
static inline uint8_t *bitLow = new uint8_t[2]{
(bitPauseTakts + bitActiveTakts) * 2 - 1,
(bitPauseTakts) * 2 - 1};
uint8_t *currentBitSequence = bitLow; uint8_t *currentBitSequence = bitLow;
volatile SignalPart signal; volatile SignalPart signal;
}; };

View File

@ -1,33 +0,0 @@
#include "IR_config.h"
void IR_FOX::setPin(uint8_t pin){
this->pin = pin;
port = digitalPinToPort(pin);
mask = digitalPinToBitMask(pin);
}
void IR_FOX::checkAddressRuleApply(uint16_t address, uint16_t id, bool &flag)
{
flag = false;
flag |= id == 0;
flag |= address == id;
flag |= address >= IR_Broadcast;
}
uint8_t IR_FOX::crc8(uint8_t *data, uint8_t start, uint8_t end, uint8_t poly)
{ // TODO: сделать возможность межбайтовой проверки
uint8_t crc = 0xff;
size_t i, j;
for (i = start; i < end; i++)
{
crc ^= data[i];
for (j = 0; j < 8; j++)
{
if ((crc & 0x80) != 0)
crc = (uint8_t)((crc << 1) ^ poly);
else
crc <<= 1;
}
}
return crc;
};

View File

@ -1,39 +1,25 @@
#pragma once #pragma once
#include <Arduino.h> #include <Arduino.h>
#include <list>
// #define IRDEBUG_INFO // #define IRDEBUG_INFO
/*////////////////////////////////////////////////////////////////////////////////////// /*//////////////////////////////////////////////////////////////////////////////////////
Для работы в паре положить декодер в энкодер Для работы в паре положить декодер в энкодер
*/ */// Адресация с 1 до 65 499
// Адресация с 1 до 65 499 #define IR_Broadcast 65000 // 65 500 ~ 65 535 - широковещательные пакеты (всем), возможно разделить на 35 типов
#define IR_Broadcast 65000 // 65 500 ~ 65 535 - широковещательные пакеты (всем)
/* /*
*Адресное пространство: Адрес 0 запрещен и зарезервирован под NULL, либо тесты
Адрес 0 запрещен и зарезервирован под NULL, либо тесты IR_MSG_ACCEPT с адреса 0 воспринимается всеми устройствами
IR_MSG_ACCEPT с адреса 0 воспринимается всеми устройствами
*/
//**** Контрольные точки ******
#define IR_MAX_ADDR_CPU 63999
#define IR_MIN_ADDR_CPU 32000
// //***** Группы машинок ********
// #define IR_MAX_CAR_GROUP 31999
// #define IR_MIN_CAR_GROUP 30000
// //********** FREE ************* Адресное пространство:
// #define IR_MAX_FREE 31999
// #define IR_MIN_FREE 2000 Излучатели контрольных точек: 1000 ~ 1999
Излучатели без обратной связиЖ 2000 ~ 2999
Излучатели светофоров: 3000 ~ 3999
//********* Машинки ***********
#define IR_MAX_CAR 31999
#define IR_MIN_CAR 1
//***** Пульты управления *****
#define IR_MAX_CONTROLLER 64999
#define IR_MIN_CONTROLLER 64000
/*
/```````````````````````````````````````````````` data pack `````````````````````````````````````````````\                                   /```````````````````````````````````````````````` data pack `````````````````````````````````````````````\                                  
                                                                                                                                                                                                                   
@ -54,59 +40,59 @@ msg type:
                                        // | xxx..... | = тип сообщения                                         // | xxx..... | = тип сообщения
                                        // | ...xxxxx | = длина (максимум 31 бита)                                         // | ...xxxxx | = длина (максимум 31 бита)
                                        //  ---------- */                                         //  ---------- */
#define IR_MSG_BACK 0U // | 000...... | = Задний сигнал машинки #define IR_MSG_BACK 0U // | 000...... | = Задний сигнал машинки
#define IR_MSG_ACCEPT 1U // | 001..... | = подтверждение #define IR_MSG_ACCEPT 1U // | 001..... | = подтверждение
#define IR_MSG_REQUEST 2U // | 010..... | = запрос #define IR_MSG_REQUEST 2U // | 010..... | = запрос
// #define IR_MSG_ 3U // | 011..... | = ?? #define IR_MSG_ 3U // | 011..... | = ??
#define IR_MSG_BACK_TO 4U // | 100..... | = Задний сигнал машинки c адресацией #define IR_MSG_BACK_TO 4U // | 100..... | = Задний сигнал машинки c адресацией
// #define IR_MSG_ 5U // | 101..... | = ?? #define IR_MSG_ 5U // | 101..... | = ??
#define IR_MSG_DATA_NOACCEPT 6U // | 110..... | = данные, не требующие подтверждения #define IR_MSG_DATA_NOACCEPT 6U // | 110..... | = данные, не требующие подтверждения
#define IR_MSG_DATA_ACCEPT 7U // | 111..... | = данные требующие подтверждения #define IR_MSG_DATA_ACCEPT 7U // | 111..... | = данные требующие подтверждения
; /*   // ---------- ;/*   // ----------
/``````````````````````````````` подтверждение `````````````````````````````\      /``````````````````````````````````````` запрос ``````````````````````````````````\ /``````````````````````````````` подтверждение `````````````````````````````\      /``````````````````````````````````````` запрос ``````````````````````````````````\
                                                                                                                                                                                                                                             
{``````````} [````````````````````````] [``````````````````] [``````````````]      {``````````} [````````````````````````] [````````````````````````] [``````````````] {``````````} [````````````````````````] [``````````````````] [``````````````]      {``````````} [````````````````````````] [````````````````````````] [``````````````]
{ msg type } [ addr_from uint16_t ] [=== customByte ===] [ CRC Bytes ]      { msg type } [ addr_from uint16_t ] [ addr_to uint16_t ] [ CRC Bytes ] { msg type } [ addr_from uint16_t ] [=== customByte ===] [ CRC Bytes ]      { msg type } [ addr_from uint16_t ] [ addr_to uint16_t ] [ CRC Bytes ]
{..........} [........................] [..................] [..............]      {..........} [........................] [........................] [..............] {..........} [........................] [..................] [..............]      {..........} [........................] [........................] [..............]
                                                                                                                                                                                                                                                                                                                         
{ 001..... } [addr_from_H][addr_from_L] [=== customByte ===] [ crc1 ][ crc2 ]      { 010..... } [addr_from_H][addr_from_L] [addr_from_H][addr_from_L] [ crc1 ][ crc2 ] { 001..... } [addr_from_H][addr_from_L] [=== customByte ===] [ crc1 ][ crc2 ]      { 010..... } [addr_from_H][addr_from_L] [addr_from_H][addr_from_L] [ crc1 ][ crc2 ]
|     0            1           2                  3              4       5          |     0            1           2              3           4           5       6     |     0            1           2                  3              4       5          |     0            1           2              3           4           5       6    
\________________________________________________________________/       |          \_____________________________________________________________________/       |     \________________________________________________________________/       |          \_____________________________________________________________________/       |    
|                                                                        |          |                                                                             |     |                                                                        |          |                                                                             |    
\________________________________________________________________________/          \_____________________________________________________________________________/     \________________________________________________________________________/          \_____________________________________________________________________________/    
customByte - контрольная сумма принятых данных по poly1 customByte - контрольная сумма принятых данных по poly1
/`````````````````````` Задний сигнал машинки без адресации ``````````````````````\         /`````````````````````` Задний сигнал машинки без адресации ``````````````````````\        
                                                                                                                                                                                       
{``````````} [````````````````````````] [````````````````````````] [``````````````]         {``````````} [````````````````````````] [````````````````````````] [``````````````]        
{ msg type } [ addr_from uint16_t ] [====== data bytes ======] [ CRC Bytes ]         { msg type } [ addr_from uint16_t ] [====== data bytes ======] [ CRC Bytes ]        
{..........} [........................] [........................] [..............]         {..........} [........................] [........................] [..............]        
                                                                                                                                                                                       
{ 0000xxxx } [addr_from_H][addr_from_L] [data_H][data_n..][data_L] [ crc1 ][ crc2 ]         { 0000xxxx } [addr_from_H][addr_from_L] [data_H][data_n..][data_L] [ crc1 ][ crc2 ]        
|     0           1            2            3                         |       |             |     0           1            2            3                         |       |            
\_____________________________________________________________________/       |             \_____________________________________________________________________/       |            
|                                                                             |             |                                                                             |            
\_____________________________________________________________________________/             \_____________________________________________________________________________/            
/```````````````````````````````````` Задний сигнал машинки с адресацией ````````````````````````````````````\  /```````````````````````````````````` Задний сигнал машинки с адресацией ````````````````````````````````````\ 
                                                                                                                                                                         
{``````````} [````````````````````````] [````````````````````````] [````````````````````````] [``````````````]  {``````````} [````````````````````````] [````````````````````````] [````````````````````````] [``````````````] 
{ msg type } [ addr_from uint16_t ] [ addr_to uint16_t ] [====== data bytes ======] [ CRC Bytes ]  { msg type } [ addr_from uint16_t ] [ addr_to uint16_t ] [====== data bytes ======] [ CRC Bytes ] 
{..........} [........................] [........................] [........................] [..............]  {..........} [........................] [........................] [........................] [..............] 
                                                                                                                                                                                                                               
{ 0001xxxx } [addr_from_H][addr_from_L] [addr_from_H][addr_from_L] [data_H][data_n..][data_L] [ crc1 ][ crc2 ]  { 0001xxxx } [addr_from_H][addr_from_L] [addr_from_H][addr_from_L] [data_H][data_n..][data_L] [ crc1 ][ crc2 ] 
|     0           1            2              3           4            5                         |       |      |     0           1            2              3           4            5                         |       |     
\________________________________________________________________________________________________/       |      \________________________________________________________________________________________________/       |     
|                                                                                                        |      |                                                                                                        |     
\________________________________________________________________________________________________________/      \________________________________________________________________________________________________________/     
*/ */
#define IR_MASK_MSG_TYPE 0b00000111 #define IR_MASK_MSG_TYPE 0b00000111
#define IR_MASK_MSG_INFO 0b00011111 #define IR_MASK_MSG_INFO 0b00011111
@ -115,14 +101,13 @@ msg type:
/////////////////////////////////////////////////////////////////////////////////////*/ /////////////////////////////////////////////////////////////////////////////////////*/
typedef uint16_t crc_t; typedef uint16_t crc_t;
// #define BRUTEFORCE_CHECK // Перепроверяет пакет на 1 битные ошибки //TODO: зависает #define bytePerPack 16 // колличество байтов в пакете
#define bytePerPack 16 // колличество байтов в пакете
#ifndef freeFrec #ifndef freeFrec
#define freeFrec false #define freeFrec true
#endif #endif
#ifndef subBufferSize #ifndef subBufferSize
#define subBufferSize 250 // Буфер для складирования фронтов, пока их не обработают (передатчик) #define subBufferSize 35 //Буфер для складирования фронтов, пока их не обработают (передатчик)
#endif #endif
#define preambPulse 3 #define preambPulse 3
@ -131,40 +116,33 @@ typedef uint16_t crc_t;
///////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////
#define bitPerByte 8U // Колличество бит в байте #define bitPerByte 8U // Колличество бит в байте
#define addrBytes 2 #define addrBytes 2
#define msgBytes 1 #define msgBytes 1
#define crcBytes 2 #define crcBytes 2
#define poly1 0x31 #define poly1 0x31
#define poly2 0x8C #define poly2 0x8C
#define syncBits 3U // количество битов синхронизации #define syncBits 3U // количество битов синхронизации
#define dataByteSizeMax (msgBytes + addrBytes + addrBytes + bytePerPack + crcBytes) #define dataByteSizeMax (msgBytes + addrBytes + addrBytes + bytePerPack + crcBytes)
#define preambFronts (preambPulse * 2) // количество фронтов преамбулы (Приём) #define preambFronts (preambPulse*2) // количество фронтов преамбулы (Приём)
#define preambToggle ((bitPauseTakts * 2 + bitActiveTakts) * 2 - 1) // колличество переключений преамбулы (Передача) #define preambToggle ((bitPauseTakts * 2 + bitActiveTakts) * 2 - 1) // колличество переключений преамбулы (Передача)
#define carrierFrec 38000U // частота несущей (Приём/Передача) #define carrierFrec 38000U // частота несущей (Приём/Передача)
#define carrierPeriod (1000000U / carrierFrec) // период несущей в us (Приём) #define carrierPeriod (1000000U/carrierFrec) // период несущей в us (Приём)
// В процессе работы значения будут отклонятся в соответствии с предыдущим битом // В процессе работы значения будут отклонятся в соответствии с предыдущим битом
#define bitActiveTakts 25U // длительность высокого уровня в тактах #define bitActiveTakts 25U // длительность высокого уровня в тактах
#define bitPauseTakts 12U // длительность низкого уровня в тактах #define bitPauseTakts 6U // длительность низкого уровня в тактах
#define bitTakts (bitActiveTakts + bitPauseTakts) // Общая длительность бита в тактах #define bitTakts (bitActiveTakts+(bitPauseTakts*2U)) // Общая длительность бита в тактах
#define bitTime (bitTakts * carrierPeriod) // Общая длительность бита #define bitTime (bitTakts*carrierPeriod) // Общая длительность бита
#define tolerance 300U #define tolerance 300U
constexpr uint16_t test_all_Time = bitTime; class IR_FOX {
constexpr uint16_t test_all_Takts = bitTakts * 2;
constexpr uint16_t test_hi = ((bitPauseTakts) * 2 - 0) + ((bitActiveTakts) * 2 - 0);
constexpr uint16_t test_low = ((bitPauseTakts / 2 + bitActiveTakts) * 2 - 0) + ((bitPauseTakts)-0);
class IR_FOX
{
public: public:
struct PackOffsets struct PackOffsets {
{
uint8_t msgOffset; uint8_t msgOffset;
uint8_t addrFromOffset; uint8_t addrFromOffset;
uint8_t addrToOffset; uint8_t addrToOffset;
@ -172,41 +150,54 @@ public:
uint8_t crcOffset; uint8_t crcOffset;
}; };
struct ErrorsStruct struct ErrorsStruct {
{
uint8_t lowSignal = 0; uint8_t lowSignal = 0;
uint8_t highSignal = 0; uint8_t highSignal = 0;
uint8_t other = 0; uint8_t other = 0;
void reset() void reset() {
{
lowSignal = 0; lowSignal = 0;
highSignal = 0; highSignal = 0;
other = 0; other = 0;
} }
uint16_t all() { return lowSignal + highSignal + other; } uint16_t all() { return lowSignal + highSignal + other; }
}; };
struct PackInfo struct PackInfo {
{ uint8_t* buffer = nullptr;
uint8_t *buffer = nullptr;
uint8_t packSize = 0; uint8_t packSize = 0;
uint16_t crc = 0; uint16_t crc = 0;
ErrorsStruct err; ErrorsStruct err;
uint16_t rTime = 0; uint16_t rTime = 0;
}; };
inline uint16_t getId() const { return id; } static void checkAddressRuleApply(uint16_t address, uint16_t id, bool& flag) {
inline void setId(uint16_t id) { this->id = id; } flag = false;
static void checkAddressRuleApply(uint16_t address, uint16_t id, bool &flag); flag |= id == 0;
void setPin(uint8_t pin); flag |= address == id;
inline uint8_t getPin() { return pin; }; flag |= address >= IR_Broadcast;
}
uint16_t getId() { return id; }
void setId(uint16_t id) { this->id = id; }
protected: protected:
uint16_t id;
uint8_t pin;
GPIO_TypeDef *port;
uint16_t mask;
ErrorsStruct errors; ErrorsStruct errors;
uint8_t crc8(uint8_t *data, uint8_t start, uint8_t end, uint8_t poly); uint16_t id;
uint8_t crc8(uint8_t* data, uint8_t start, uint8_t end, uint8_t poly) { //TODO: сделать возможность межбайтовой проверки
uint8_t crc = 0xff;
size_t i, j;
for (i = start; i < end; i++) {
crc ^= data[i];
for (j = 0; j < 8; j++) {
if ((crc & 0x80) != 0)
crc = (uint8_t)((crc << 1) ^ poly);
else
crc <<= 1;
}
}
return crc;
}
}; };

View File

@ -1,107 +0,0 @@
#include "PacketTypes.h"
namespace PacketTypes
{
bool BasePack::checkAddress() { return true; };
void BasePack::set(IR_FOX::PackInfo *packInfo, uint16_t id)
{
this->packInfo = packInfo;
this->id = id;
if (checkAddress())
{
isAvailable = true;
isRawAvailable = true;
#ifdef IRDEBUG_INFO
Serial.print(" OK ");
#endif
}
else
{
isRawAvailable = true;
#ifdef IRDEBUG_INFO
Serial.print(" NOT-OK ");
#endif
}
}
uint16_t BasePack::_getAddrFrom(BasePack *obj)
{
return (obj->packInfo->buffer[obj->addressFromOffset] << 8) | obj->packInfo->buffer[obj->addressFromOffset + 1];
};
uint16_t BasePack::_getAddrTo(BasePack *obj)
{
return (obj->packInfo->buffer[obj->addressToOffset] << 8) | obj->packInfo->buffer[obj->addressToOffset + 1];
};
uint8_t BasePack::_getDataSize(BasePack *obj)
{
return obj->packInfo->packSize - crcBytes - obj->DataOffset;
};
uint8_t *BasePack::_getDataPrt(BasePack *obj)
{
return obj->packInfo->buffer + obj->DataOffset;
};
uint8_t BasePack::_getDataRawSize(BasePack *obj)
{
return obj->packInfo->packSize;
};
bool BasePack::available()
{
if (isAvailable)
{
isAvailable = false;
isRawAvailable = false;
return true;
}
else
{
return false;
}
};
bool BasePack::availableRaw()
{
if (isRawAvailable)
{
isRawAvailable = false;
return true;
}
else
{
return false;
}
};
bool Data::checkAddress()
{
bool ret;
IR_FOX::checkAddressRuleApply(getAddrTo(), this->id, ret);
return ret;
}
bool DataBack::checkAddress()
{
bool ret;
if (getMsgType() == IR_MSG_BACK_TO)
{
DataOffset = 5;
IR_FOX::checkAddressRuleApply((packInfo->buffer[addressToOffset] << 8) | packInfo->buffer[addressToOffset + 1], this->id, ret);
}
else
{
DataOffset = 3;
ret = true;
}
return ret;
}
bool Accept::checkAddress() { return true; }
bool Request::checkAddress()
{
bool ret;
IR_FOX::checkAddressRuleApply(getAddrTo(), this->id, ret);
return ret;
}
}

View File

@ -21,28 +21,86 @@ namespace PacketTypes
IR_FOX::PackInfo *packInfo; IR_FOX::PackInfo *packInfo;
uint16_t id; uint16_t id;
virtual bool checkAddress(); virtual bool checkAddress() { return true; };
void set(IR_FOX::PackInfo *packInfo, uint16_t id); void set(IR_FOX::PackInfo *packInfo, uint16_t id)
{
this->packInfo = packInfo;
this->id = id;
static uint16_t _getAddrFrom(BasePack *obj); if (checkAddress())
static uint16_t _getAddrTo(BasePack *obj); {
static uint8_t _getDataSize(BasePack *obj); isAvailable = true;
static uint8_t *_getDataPrt(BasePack *obj); isRawAvailable = true;
static uint8_t _getDataRawSize(BasePack *obj); #ifdef IRDEBUG_INFO
Serial.print(" OK ");
#endif
}
else
{
isRawAvailable = true;
#ifdef IRDEBUG_INFO
Serial.print(" NOT-OK ");
#endif
}
}
static uint16_t _getAddrFrom(BasePack *obj)
{
return (obj->packInfo->buffer[obj->addressFromOffset] << 8) | obj->packInfo->buffer[obj->addressFromOffset + 1];
};
static uint16_t _getAddrTo(BasePack *obj)
{
return (obj->packInfo->buffer[obj->addressToOffset] << 8) | obj->packInfo->buffer[obj->addressToOffset + 1];
};
static uint8_t _getDataSize(BasePack *obj)
{
return obj->packInfo->packSize - crcBytes - obj->DataOffset;
};
static uint8_t *_getDataPrt(BasePack *obj)
{
return obj->packInfo->buffer + obj->DataOffset;
};
static uint8_t _getDataRawSize(BasePack *obj)
{
return obj->packInfo->packSize;
};
public: public:
bool available(); bool available()
bool availableRaw(); {
if (isAvailable)
inline uint8_t getMsgInfo() { return packInfo->buffer[0] & IR_MASK_MSG_INFO; }; {
inline uint8_t getMsgType() { return (packInfo->buffer[0] >> 5) & IR_MASK_MSG_TYPE; }; isAvailable = false;
inline uint8_t getMsgRAW() { return packInfo->buffer[0]; }; isRawAvailable = false;
inline uint16_t getErrorCount() { return packInfo->err.all(); }; return true;
inline uint8_t getErrorLowSignal() { return packInfo->err.lowSignal; }; }
inline uint8_t getErrorHighSignal() { return packInfo->err.highSignal; }; else
inline uint8_t getErrorOther() { return packInfo->err.other; }; {
inline uint16_t getTunerTime() { return packInfo->rTime; }; return false;
inline uint8_t *getDataRawPtr() { return packInfo->buffer; }; }
};
bool availableRaw()
{
if (isRawAvailable)
{
isRawAvailable = false;
return true;
}
else
{
return false;
}
};
uint8_t getMsgInfo() { return packInfo->buffer[0] & IR_MASK_MSG_INFO; };
uint8_t getMsgType() { return (packInfo->buffer[0] >> 5) & IR_MASK_MSG_TYPE; };
uint8_t getMsgRAW() { return packInfo->buffer[0]; };
uint16_t getErrorCount() { return packInfo->err.all(); };
uint8_t getErrorLowSignal() { return packInfo->err.lowSignal; };
uint8_t getErrorHighSignal() { return packInfo->err.highSignal; };
uint8_t getErrorOther() { return packInfo->err.other; };
uint16_t getTunerTime() { return packInfo->rTime; };
uint8_t *getDataRawPtr() { return packInfo->buffer; };
}; };
class Data : public BasePack class Data : public BasePack
@ -56,15 +114,20 @@ namespace PacketTypes
DataOffset = 5; DataOffset = 5;
} }
inline uint16_t getAddrFrom() { return _getAddrFrom(this); }; uint16_t getAddrFrom() { return _getAddrFrom(this); };
inline uint16_t getAddrTo() { return _getAddrTo(this); }; uint16_t getAddrTo() { return _getAddrTo(this); };
inline uint8_t getDataSize() { return _getDataSize(this); }; uint8_t getDataSize() { return _getDataSize(this); };
inline uint8_t *getDataPrt() { return _getDataPrt(this); }; uint8_t *getDataPrt() { return _getDataPrt(this); };
inline uint8_t getDataRawSize() { return _getDataRawSize(this); }; uint8_t getDataRawSize() { return _getDataRawSize(this); };
private: private:
bool checkAddress() override; bool checkAddress() override
{
bool ret;
IR_FOX::checkAddressRuleApply(getAddrTo(), this->id, ret);
return ret;
}
}; };
class DataBack : public BasePack class DataBack : public BasePack
@ -78,15 +141,29 @@ namespace PacketTypes
DataOffset = 3; DataOffset = 3;
} }
inline uint16_t getAddrFrom() { return _getAddrFrom(this); }; uint16_t getAddrFrom() { return _getAddrFrom(this); };
inline uint16_t getAddrTo() { return _getAddrTo(this); }; uint16_t getAddrTo() { return _getAddrTo(this); };
inline uint8_t getDataSize() { return _getDataSize(this); }; uint8_t getDataSize() { return _getDataSize(this); };
inline uint8_t *getDataPrt() { return _getDataPrt(this); }; uint8_t *getDataPrt() { return _getDataPrt(this); };
inline uint8_t getDataRawSize() { return _getDataRawSize(this); }; uint8_t getDataRawSize() { return _getDataRawSize(this); };
private: private:
bool checkAddress() override; bool checkAddress() override
{
bool ret;
if (getMsgType() == IR_MSG_BACK_TO)
{
DataOffset = 5;
IR_FOX::checkAddressRuleApply((packInfo->buffer[addressToOffset] << 8) | packInfo->buffer[addressToOffset + 1], this->id, ret);
}
else
{
DataOffset = 3;
ret = true;
}
return ret;
}
}; };
class Accept : public BasePack class Accept : public BasePack
@ -99,11 +176,11 @@ namespace PacketTypes
DataOffset = 3; DataOffset = 3;
} }
inline uint16_t getAddrFrom() { return _getAddrFrom(this); }; uint16_t getAddrFrom() { return _getAddrFrom(this); };
inline uint8_t getCustomByte() { return packInfo->buffer[DataOffset]; }; uint8_t getCustomByte() { return packInfo->buffer[DataOffset]; };
private: private:
bool checkAddress() override; bool checkAddress() override { return true; }
}; };
class Request : public BasePack class Request : public BasePack
@ -117,11 +194,168 @@ namespace PacketTypes
DataOffset = 3; DataOffset = 3;
} }
inline uint16_t getAddrFrom() { return _getAddrFrom(this); }; uint16_t getAddrFrom() { return _getAddrFrom(this); };
inline uint16_t getAddrTo() { return _getAddrTo(this); }; uint16_t getAddrTo() { return _getAddrTo(this); };
private: private:
bool checkAddress() override; bool checkAddress() override
{
bool ret;
IR_FOX::checkAddressRuleApply(getAddrTo(), this->id, ret);
return ret;
}
}; };
} }
// class IOffsets {
// protected:
// uint8_t msgOffset;
// uint8_t addressFromOffset;
// uint8_t addressToOffset;
// uint8_t DataOffset;
// };
// class IPackInfo {
// public:
// IR_FOX::PackInfo* packInfo;
// };
// class IBaseEmptyPack : virtual public IOffsets, virtual public IPackInfo {
// };
// class IR_Decoder;
// class IEmptyPack : virtual protected IBaseEmptyPack, virtual public IR_FOX {
// friend IR_Decoder;
// bool isAvailable;
// bool isRawAvailable;
// bool isNeedAccept;
// protected:
// uint16_t id;
// virtual bool checkAddress() {};
// virtual void set(IR_FOX::PackInfo* packInfo, uint16_t id, bool isNeedAccept = false) {
// IBaseEmptyPack::IPackInfo::packInfo = packInfo;
// this->id = id;
// this->isNeedAccept = isNeedAccept;
// if (isAvailable = checkAddress()) {
// isAvailable = true;
// isRawAvailable = true;
// Serial.print(" OK ");
// } else {
// isRawAvailable = true;
// Serial.print(" NOT-OK ");
// }
// }
// public:
// virtual bool available() { if (isAvailable) { isAvailable = false; isRawAvailable = false; return true; } else { return false; } };
// virtual bool availableRaw() { if (isRawAvailable) { isRawAvailable = false; return true; } else { return false; } };
// virtual uint8_t getMsgInfo() { return packInfo->buffer[0] & IR_MASK_MSG_INFO; };
// virtual uint8_t getMsgType() { return (packInfo->buffer[0] >> 5) & IR_MASK_MSG_TYPE; };
// virtual uint8_t getMsgRAW() { return packInfo->buffer[0]; };
// virtual uint16_t getErrorCount() { return packInfo->err.all(); };
// virtual uint8_t getErrorLowSignal() { return packInfo->err.lowSignal; };
// virtual uint8_t getErrorHighSignal() { return packInfo->err.highSignal; };
// virtual uint8_t getErrorOther() { return packInfo->err.other; };
// virtual uint16_t getTunerTime() { return packInfo->rTime; };
// };
// class IHasAddresFrom : virtual protected IBaseEmptyPack {
// public:
// virtual uint16_t getAddrFrom() { return (packInfo->buffer[addressFromOffset] << 8) | packInfo->buffer[addressFromOffset + 1]; };
// };
// class IHasAddresTo : virtual protected IBaseEmptyPack {
// public:
// virtual uint16_t getAddrTo() { return (packInfo->buffer[addressToOffset] << 8) | packInfo->buffer[addressToOffset + 1]; };
// };
// class IHasAddresData : virtual protected IBaseEmptyPack {
// public:
// virtual uint8_t getDataSize() { return packInfo->packSize - crcBytes - DataOffset; };
// virtual uint8_t* getDataPrt() { return packInfo->buffer + DataOffset; };
// virtual uint8_t getDataRawSize() { return packInfo->packSize; };
// virtual uint8_t* getDataRawPtr() { return packInfo->buffer; };
// };
// /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// class Data :
// virtual public IEmptyPack,
// virtual public IHasAddresFrom,
// virtual public IHasAddresTo,
// virtual public IHasAddresData {
// public:
// Data() {
// msgOffset = 0;
// addressFromOffset = 1;
// addressToOffset = 3;
// DataOffset = 5;
// }
// protected:
// bool checkAddress() override {
// bool ret;
// checkAddressRuleApply(getAddrTo(), this->id, ret);
// return ret;
// }
// };
// class DataBack :
// virtual public IEmptyPack,
// virtual public IHasAddresFrom,
// virtual public IHasAddresData {
// public:
// DataBack() {
// msgOffset = 0;
// addressFromOffset = 1;
// addressToOffset = 3;
// DataOffset = 3;
// }
// protected:
// bool checkAddress() override {
// bool ret;
// if (getMsgType() == IR_MSG_BACK_TO) {
// DataOffset = 5;
// checkAddressRuleApply((packInfo->buffer[addressToOffset] << 8) | packInfo->buffer[addressToOffset + 1], this->id, ret);
// } else {
// DataOffset = 3;
// ret = true;
// }
// return ret;
// }
// };
// class Request :
// virtual public IEmptyPack,
// virtual public IHasAddresFrom,
// virtual public IHasAddresTo {
// public:
// Request() {
// msgOffset = 0;
// addressFromOffset = 1;
// addressToOffset = 3;
// DataOffset = 3;
// }
// protected:
// bool checkAddress() override {
// bool ret;
// checkAddressRuleApply(getAddrTo(), this->id, ret);
// return ret;
// }
// };
// class Accept :
// virtual public IEmptyPack,
// virtual public IHasAddresFrom {
// public:
// Accept() {
// msgOffset = 0;
// addressFromOffset = 1;
// DataOffset = 1;
// }
// protected:
// };

View File

@ -1,39 +0,0 @@
#pragma once
#include "Arduino.h"
template <typename T, unsigned int BufferSize>
class RingBuffer {
public:
RingBuffer() : start(0), end(0) {}
bool isFull() const {
return ((end + 1) % BufferSize) == start;
}
bool isEmpty() const {
return start == end;
}
void push(T element) {
noInterrupts();
if (!isFull()) {
data[end] = element;
end = (end + 1) % BufferSize;
}
interrupts();
}
T* pop() {
noInterrupts();
T* value = nullptr;
if (!isEmpty()) {
value = &data[start];
start = (start + 1) % BufferSize;
}
interrupts();
return value;
}
private:
T data[BufferSize];
unsigned int start, end;
};