mirror of
https://github.com/DashyFox/StackSport.git
synced 2025-06-28 13:19:41 +00:00
test sound
This commit is contained in:
173
Core/Src/Sound.c
Normal file
173
Core/Src/Sound.c
Normal file
@ -0,0 +1,173 @@
|
||||
/*
|
||||
* Sound.c
|
||||
*
|
||||
* Created on: Oct 1, 2024
|
||||
* Author: DashyFox
|
||||
*/
|
||||
|
||||
#include "Sound.h"
|
||||
#include "stm32f103xb.h"
|
||||
#include "SimpleTimer.h"
|
||||
|
||||
static uint32_t bpm = 145; // Default BPM
|
||||
static uint32_t note_end_time_ch3 = 0; // End time for channel 3
|
||||
static uint32_t note_end_time_ch4 = 0; // End time for channel 4
|
||||
static Note_t current_note_ch3;
|
||||
static Note_t current_note_ch4;
|
||||
|
||||
// Initialize the sound system
|
||||
void sound_init(void) {
|
||||
// Enable timer clock
|
||||
RCC->APB1ENR |= SOUND_TIMER_RCC;
|
||||
|
||||
// Configure GPIO pins for timer output (assuming GPIOB pins for TIM4 CH3 and CH4)
|
||||
RCC->APB2ENR |= RCC_APB2ENR_IOPBEN;
|
||||
|
||||
if (SOUND_CHANNEL_1 == 1 || SOUND_CHANNEL_1 == 2) {
|
||||
GPIOB->CRL &= ~(0xF << ((SOUND_CHANNEL_1 - 1) * 4)); // Clear
|
||||
GPIOB->CRL |= (0xB << ((SOUND_CHANNEL_1 - 1) * 4)); // Alternate function push-pull
|
||||
} else if (SOUND_CHANNEL_1 == 3 || SOUND_CHANNEL_1 == 4) {
|
||||
GPIOB->CRH &= ~(0xF << ((SOUND_CHANNEL_1 - 8) * 4)); // Clear
|
||||
GPIOB->CRH |= (0xB << ((SOUND_CHANNEL_1 - 8) * 4)); // Alternate function push-pull
|
||||
}
|
||||
|
||||
if (SOUND_CHANNEL_2 == 1 || SOUND_CHANNEL_2 == 2) {
|
||||
GPIOB->CRL &= ~(0xF << ((SOUND_CHANNEL_2 - 1) * 4)); // Clear
|
||||
GPIOB->CRL |= (0xB << ((SOUND_CHANNEL_2 - 1) * 4)); // Alternate function push-pull
|
||||
} else if (SOUND_CHANNEL_2 == 3 || SOUND_CHANNEL_2 == 4) {
|
||||
GPIOB->CRH &= ~(0xF << ((SOUND_CHANNEL_2 - 8) * 4)); // Clear
|
||||
GPIOB->CRH |= (0xB << ((SOUND_CHANNEL_2 - 8) * 4)); // Alternate function push-pull
|
||||
}
|
||||
|
||||
// Initialize the timer for PWM output
|
||||
SOUND_TIMER->PSC = 0; // Will be set in sound_play_note()
|
||||
SOUND_TIMER->ARR = 0xFFFF; // Will be set in sound_play_note()
|
||||
|
||||
// Configure PWM mode on both channels
|
||||
if (SOUND_CHANNEL_1 == 3) {
|
||||
SOUND_TIMER->CCMR2 &= ~TIM_CCMR2_OC3M;
|
||||
SOUND_TIMER->CCMR2 |= (6 << TIM_CCMR2_OC3M_Pos); // PWM mode 1 for channel 3
|
||||
SOUND_TIMER->CCER |= TIM_CCER_CC3E; // Enable output on channel 3
|
||||
} else if (SOUND_CHANNEL_1 == 4) {
|
||||
SOUND_TIMER->CCMR2 &= ~TIM_CCMR2_OC4M;
|
||||
SOUND_TIMER->CCMR2 |= (6 << TIM_CCMR2_OC4M_Pos); // PWM mode 1 for channel 4
|
||||
SOUND_TIMER->CCER |= TIM_CCER_CC4E; // Enable output on channel 4
|
||||
}
|
||||
|
||||
if (SOUND_CHANNEL_2 == 3) {
|
||||
SOUND_TIMER->CCMR2 &= ~TIM_CCMR2_OC3M;
|
||||
SOUND_TIMER->CCMR2 |= (6 << TIM_CCMR2_OC3M_Pos); // PWM mode 1 for channel 3
|
||||
SOUND_TIMER->CCER |= TIM_CCER_CC3E; // Enable output on channel 3
|
||||
} else if (SOUND_CHANNEL_2 == 4) {
|
||||
SOUND_TIMER->CCMR2 &= ~TIM_CCMR2_OC4M;
|
||||
SOUND_TIMER->CCMR2 |= (6 << TIM_CCMR2_OC4M_Pos); // PWM mode 1 for channel 4
|
||||
SOUND_TIMER->CCER |= TIM_CCER_CC4E; // Enable output on channel 4
|
||||
}
|
||||
|
||||
// Generate an update event to reload the prescaler and ARR values
|
||||
SOUND_TIMER->EGR = TIM_EGR_UG;
|
||||
|
||||
// Enable the timer
|
||||
SOUND_TIMER->CR1 |= TIM_CR1_CEN;
|
||||
}
|
||||
|
||||
// Set BPM
|
||||
void sound_set_bpm(uint32_t new_bpm) {
|
||||
bpm = new_bpm;
|
||||
}
|
||||
|
||||
// Play a note on a specific channel
|
||||
void sound_play_note(Note_t note, uint8_t channel) {
|
||||
if (channel == SOUND_CHANNEL_1) {
|
||||
current_note_ch3 = note;
|
||||
if (note.frequency == 0) {
|
||||
// Pause on channel 3
|
||||
SOUND_TIMER->CCER &= ~TIM_CCER_CC3E; // Disable output on channel 3
|
||||
note_end_time_ch3 = millis() + note.duration;
|
||||
} else {
|
||||
// Configure frequency and duty cycle for channel 3
|
||||
uint32_t timer_clock = SystemCoreClock / 2; // Assuming APB1 prescaler is 2
|
||||
uint32_t prescaler = (timer_clock / (note.frequency * 65536)) + 1;
|
||||
uint32_t arr = (timer_clock / (prescaler * note.frequency)) - 1;
|
||||
uint32_t ccr = ((arr + 1) * note.duty_cycle) / 100 - 1;
|
||||
|
||||
SOUND_TIMER->PSC = prescaler - 1;
|
||||
SOUND_TIMER->ARR = arr;
|
||||
SOUND_TIMER->CCR3 = ccr;
|
||||
|
||||
// Configure PWM mode for channel 3
|
||||
SOUND_TIMER->CCMR2 &= ~(TIM_CCMR2_OC3M | TIM_CCMR2_OC3PE);
|
||||
SOUND_TIMER->CCMR2 |= (TIM_CCMR2_OC3M_1 | TIM_CCMR2_OC3M_2 | TIM_CCMR2_OC3PE); // PWM mode 1
|
||||
|
||||
SOUND_TIMER->CCER |= TIM_CCER_CC3E; // Enable output on channel 3
|
||||
SOUND_TIMER->EGR = TIM_EGR_UG; // Update registers
|
||||
SOUND_TIMER->CR1 |= TIM_CR1_CEN; // Enable timer
|
||||
|
||||
if (note.duration == 0) {
|
||||
note_end_time_ch3 = 0; // Infinite duration
|
||||
} else {
|
||||
note_end_time_ch3 = millis() + note.duration;
|
||||
}
|
||||
}
|
||||
} else if (channel == SOUND_CHANNEL_2) {
|
||||
current_note_ch4 = note;
|
||||
if (note.frequency == 0) {
|
||||
// Pause on channel 4
|
||||
SOUND_TIMER->CCER &= ~TIM_CCER_CC4E; // Disable output on channel 4
|
||||
note_end_time_ch4 = millis() + note.duration;
|
||||
} else {
|
||||
// Configure frequency and duty cycle for channel 4
|
||||
uint32_t timer_clock = SystemCoreClock / 2; // Assuming APB1 prescaler is 2
|
||||
uint32_t prescaler = (timer_clock / (note.frequency * 65536)) + 1;
|
||||
uint32_t arr = (timer_clock / (prescaler * note.frequency)) - 1;
|
||||
uint32_t ccr = ((arr + 1) * note.duty_cycle) / 100 - 1;
|
||||
|
||||
SOUND_TIMER->PSC = prescaler - 1;
|
||||
SOUND_TIMER->ARR = arr;
|
||||
SOUND_TIMER->CCR4 = ccr;
|
||||
|
||||
// Configure PWM mode for channel 4
|
||||
SOUND_TIMER->CCMR2 &= ~(TIM_CCMR2_OC4M | TIM_CCMR2_OC4PE);
|
||||
SOUND_TIMER->CCMR2 |= (TIM_CCMR2_OC4M_1 | TIM_CCMR2_OC4M_2 | TIM_CCMR2_OC4PE); // PWM mode 1
|
||||
|
||||
SOUND_TIMER->CCER |= TIM_CCER_CC4E; // Enable output on channel 4
|
||||
SOUND_TIMER->EGR = TIM_EGR_UG; // Update registers
|
||||
SOUND_TIMER->CR1 |= TIM_CR1_CEN; // Enable timer
|
||||
|
||||
if (note.duration == 0) {
|
||||
note_end_time_ch4 = 0; // Infinite duration
|
||||
} else {
|
||||
note_end_time_ch4 = millis() + note.duration;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Function to be called periodically to handle note duration
|
||||
void sound_tick(void) {
|
||||
if (note_end_time_ch3 != 0 && millis() >= note_end_time_ch3) {
|
||||
// Stop the note on channel 3
|
||||
SOUND_TIMER->CCER &= ~TIM_CCER_CC3E; // Disable output on channel 3
|
||||
note_end_time_ch3 = 0;
|
||||
}
|
||||
if (note_end_time_ch4 != 0 && millis() >= note_end_time_ch4) {
|
||||
// Stop the note on channel 4
|
||||
SOUND_TIMER->CCER &= ~TIM_CCER_CC4E; // Disable output on channel 4
|
||||
note_end_time_ch4 = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Create a Note_t from musical note and duration enums
|
||||
Note_t sound_create_note(MusicalNote_t note_enum, NoteDuration_t duration_enum, uint8_t duty_cycle) {
|
||||
Note_t result_note;
|
||||
result_note.frequency = note_enum;
|
||||
if (duration_enum == 0) {
|
||||
result_note.duration = 0; // Infinite duration
|
||||
} else {
|
||||
// Calculate duration in milliseconds
|
||||
uint32_t whole_note_duration = (60000 / bpm) * 4; // Duration of whole note in ms
|
||||
result_note.duration = whole_note_duration / duration_enum;
|
||||
}
|
||||
result_note.duty_cycle = duty_cycle;
|
||||
return result_note;
|
||||
}
|
Reference in New Issue
Block a user